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Linear network systems

network structure <= function = asymptotic behavior

Model Dynamics Asy Behavior Graph property
averaging flow x = —Lx consensus 3 globally reach node
(Abelson '64) Laplacian matrix

network flow x=—L"x stationary dis- d globally reach node
(Noy Meir '73) transpose Laplacian tribution

network flow with x = Cx stability outflow-connected

decay (outflows) C=—L" —diag(d)
compartmental matrix

network flow with x = Mx stability unknown
decay/growth M= —LT +diag(g — d)
Metzler matrix




Network flow systems

—precipitation—s| soil evaporation, drainage, runoff — C‘],’ = E i (FJ%I — FI*)J) — F,'*)O + u;
J

uptakCQ»transpirationﬁ
Fimj = fijqi, F=[fy]
drinking herbivory
I

e | T g=(FT —diag(F1, + f)) g + u

Water flow model for a desert ecosystem (Noy-Meir '73)

’ =C

C compartmental matrix:
quasi-positive (off-diag > 0) and non-positive column sums (fy > 0)
analysis tools: PF for quasi-positive, inverse positivity, algebraic graph

system (= each condensed sink) <:> C is Hurwitz
is outflow-connected

:> lim: 00 q(t) = —Clu>0

(-C7'u); >0 <= ith compartment is inflow-connected




Stability of network flow systems

A Metzler M is Hurwitz iff any following equivalent condition hold:
@ there exists £ € R” such that £ > 0, and M¢ < Op;
@ there exists ) € R” such that 7 > 0, and ' M < 0] ; or
© there exists a diagonal matrix P = 0 such that M" P + PM < 0.

> > >
(a) maxieqa,...,n} Xi/&i (b) nTx (c) x ' Px

Goal: graph-theoretic conditions for stability



Reducible and acyclic graphs
Reducible graphs

M € R™" is Hurwitz

0

Strongly connected components
are Hurwitz

Implication: large-scale system may be decomposed into smaller systems

V.

Directed acyclic graphs

:kg M € R"™*" is Hurwitz
ﬁ
g—»g diagonal entries are negative

Implication: study cycles!




Basic ideas: a simple cycle

my m
mi1  MmMio 0 ce 0 12
0 mxn my 2o 0 Moy M1 Moo
M= : : :
0 0 o Mp_1,n—1 Mp—_1,n
Mp1 0 e 0 Mpp
mijj
. m m m
M Hurwitz <= ( 12)( 23)...( n1><1
—mi1 —my2 —Mnn
where
o i yrepresents a “gain” for subsystem i with respect to j
—mij;
@ test: composition of “gains” along the cycle is less than 1




Basic ideas: Small-gain network stability
Cyclic Small-Gain Theorem

a network of systems with input is ISS if

cycle gain <1

about each simple cycle,
for appropriate interconnection gains

@ V. Lakshmikantham, V. M. Matrosov, and S. Sivasundaram. Vector Lyapunov
Functions and Stability Analysis of Nonlinear Systems.
Kluwer Academic Publishers, 1991

@ S. N. Dashkovskiy, B. S. Riiffer, and F. R. Wirth. Small gain theorems for large
scale systems and construction of ISS Lyapunov functions.
SIAM Journal on Control and Optimization, 48(6):4089-4118, 2010.
doi:10.1137/090746483

@ T. Liu, D. J. Hill, and Z.-P. Jiang. Lyapunov formulation of ISS cyclic-small-gain in
continuous-time dynamical networks.

Automatica, 47(9):2088-2093, 2011.


http://dx.doi.org/10.1137/090746483
http://dx.doi.org/10.1016/j.automatica.2011.06.018

Summary of results

Thm 1: Input-to-state interconnection gains for Metzler systems
Thm 2: Max-interconnection gains and graph-theoretic conditions

Thm 3: Sum-interconnection gains and graph-theoretic conditions

X. Duan, S. Jafarpour, and F. Bullo. Graph-theoretic small gain theorems for Metzler
matrices and monotone systems.

IEEE Transactions on Automatic Control, June 2019.

Submitted.

URL: https://arxiv.org/pdf/1905.05868.pdf
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Possible notions of ISS gains

An interconnected nonlinear system with subsystem dynamics

XI = f:’(X”X./\/'I’ u,‘)7 VI G {1, .. .,n}.

system has sum-interconnection gains {v;} if

()l < Bi(bi(O) ) + D viillixilio.g) + illluilloo):

JEN;

where 3; € KL, vj; € K, and v; € K.

system has max-interconnection gains {4} if

xi(8)] < jngja\}f{ﬁ,{(lxl'(o)l,t), Dii(Ixillo.g), billluillo)}-

where 3, € KL, ¥j; € K, and ¢; € K.




Thm 1: ISS gains for Metzler systems
Thm 1: ISS gains for Metzler systems

For Metzler system x = Mx + u, M with negative diagonals,
© sum-interconnection gains {v;} satisfy

mj; . .
—"'__S’y,-j, Vie{l,...,n},j EN;

n

@ max-interconnection gains {1)j;} satisfy

mij -1 .
Z<_mﬁ)w,-j <1, Vie{l,...,n}

JEN;

For ¢ = (i1, 2, ..., Ik, 1) be a simple cycle
Q@ the sum-cycle gain of ¢ is e = (Vi) (Vai) - - - (Vi)
@ a max-cycle gain of ¢ is Yc = (Viriy) (Visiy) - - - (Yii,)



Thm 2: Max-cycle gains and graph conditions

Thm 2: Conditions based on max-cycle gains

Given an irreducible Metzler matrix M € R™" with negative diagonal
elements and the set of simple cycles @, the followings are equivalent:

Q@ M is Hurwitz;
Q for every i € V and j € N, there exists 1 > 0 such that

Z(_m—,gﬁ)w,.;1<1, Vie {l,...,n}.

Pe < 1, Vc € O.

@ “cycle gain < 1 about each simple cycle” is now IFF

@ convex problem



Thm 3: Sum-cycle gains and graph conditions
Thm 3: Conditions based on sum-cycle gains

Given an irreducible Metzler matrix M € R™" with negative diagonal
elements, the followings are equivalent:
Q@ M is Hurwitz;
@ for each i, let ; be simple cycles over {1,...,i} (or renumbered)
i—1
Z Ya — Z YaYe + 0 F Z (=1)" Ve o Ve, <1
ccd; {a,2}Co; {c1,escr, }CO;
ciNe=0 ciNcj=0

@ condition 2 <= certain sums of products of gains < 1

@ computation of sum-cycle gains and “sums of products” is
straightforward (not iterative)



Thm 3: Example

V3 = {13472} {’Yq + Ve < 1}

V4 = {1a47273} {’Ycl +’}/C4 < ].7
C2®A Yo+ Yo T Ve T Vo = VaVe < 1}

Hence, stability certificate

Vi={1} = 0
Cl? Vo = {1’4} == {'7c1 < 1}
Ca —
—

Ya + Ve <1
7C1 + ’7C2 + ’763 + ’7C4 - 7C1’763 < 1
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Nonlinear network systems

Rich variety of emerging behaviors
© equilibria / limit cycles / extinction in populations dynamics
@ epidemic outbreaks in spreading processes

© synchrony and multi-stability in coupled oscillators

Rich variety of analysis tools
© nonlinear stability theory
@ passivity, small gain theorems, and dissipativity

© contractivity and monotonicity

3 (infection rate)

Susceptible

v (recovery rate)




Example: Population systems in ecology

(Vito Volterra, Universita’ di Torino, 1860-1940)

Lotka-Volterra: x; = quantity/density

%:b,+zjay>g

x = diag(x) (Ax + b)

Mutualism clownfish / anemones (Takeuchi et al '78)
v

interaction matrix A:
(+,+) mutualism, (4, —) predation, (—, —) competition
rich behavior: persistence, extinction, equilibria, periodic orbits, ...

© mutualism: a; >0

@ ceither unbounded evolution or

|:> exists unique steady state —A~1h > 0
lims o0 x(t) = —A~1b from all x(0) >0




AN T
NNS——
”%4
e
N
= g - — 7
e
H/’ et ///74/,,u /-
e ////;7///// ] T -n\(\-lu{e
N ety ///<f<\\¢\\
7 ///////}/é’\ N
T} =—ri/an

Case I: a;2 >0, ax >0,
aipar1 > aiiax. There exists no
positive equilibrium point. All

trajectories starting in R% diverge.

Dichotomy in mutualistic Lotka-Volterra system

NN

\
RN Nie—=
NN

T3 = —rafan

=
eSS

T = —r1/an

Case ll: a;2 > 0, a1 > 0,

appar1 < aiiazxn. TIhere exists a
unique positive equilibrium point.
All trajectories starting in R
converge to the equilibrium point.



Research questions in Nonlinear Network Systems

@ what are key example systems?

@ what is a useful underlying structure?

© what is a practical, simple, rich technical approach?
@ how do we treat dichotomy and richer behaviors?

© how do we automatically generate Lyapunov functions?



Example systems

Kuramoto oscillators ('75)
9,- = Wj — Zj:l a,-j sin(9,- — GJ-)

Metzler Jac: phase cohesive region

Ex: active power flow, motion patterns

Yorke network propagation ('76)

x = B(I, — diag(x)) Ax — yx

Metzler Jac and positive
Ex: network SIR, patchy SIS

Lotka-Volterra population ('20)
x = diag(x)(Ax +r)
Metzler Jac: mutualistic interactions

Ex:

with 2 genes

biochemical networks, repressilator

Daganzo cell transmission ('94)
pe = f2"(p) — 2" (p)

Metzler Jac: free flow region
Ex: monotone distributed routing (Como,
Savla, et al), Maeda '78, Sandberg '78

f(,'z f,-(xl,...,x,,,u,-) —

Metzler Jac and positive

Matrosov interconnection of ISS systems (’71)

v< —A(v)+T(v)+ G(w)




A review of Contraction Theory

given norm, the matrix measure of A is

.|l + hA|| -1
A) = lim —m——
HA) = R

assume: vector field f is infinitesimally contracting over C, that is,
p(Df(x)) <c<0, forallxeC

assume: set C is f-invariant, closed and convex

Desirable consequences

@ flow of f is a contraction, i.e.,
distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium x*, unique, globally exponentially stable
with global Lyapunov functions

x~—>Hx—x*H2 and xn—>Hf(x)H2




Qb(t? yO)

Yo ¢(t7 xO)
Lo

Figure: Any two trajectories of an infinitesimally contracting system converge.



Common matrix measures

Vector norm Matrix measure
n n
el = Zi:l ad #a(A) :_I'G{r?i).(,n} (ajj + Zi:l,i#f |aij|)
= max column “absolute sum” of A
n A+ AT
Il = />0 2(A) = Amax( )
n
X = max |x; A) = max (a-- + 8 )
[1]] 00 ie{l,...,n}| il Hoo(A) el ii j:l,j;éi| U|

= max row “absolute sum” of A

Simplifications for a Metzler matrix M

u1(M) = max n mj; = max(M"1,) = max column sum of M
j6{17"'7n} I:1

too(M) = iEJET,E.].).(,n} Z;Zl mj; = max(M1,) = max row sum of M



The Euclidean case: works by Krasovskii & Vidyasagar
Vidyasagar '78: Lyapunov functions and matrix measures

Given P > 0 and c € R,

p2.p(A) < ¢ — ATP 4+ PA < 2cP

O A Hurwitz <= A has negative weighted 2-norm (w.r.t. some P)

inf A) = tral absci fA
Q ’IDI;O/LQ’P( ) = spectral abscissa o

Krasovskil '60: method to design Lyapunov function

f is weighted 2-norm contracting if 3P > 0 and ¢ < 0
P Df (x) + Df(x)" P < 2cP, for all x € R”

Constant Lyapunov weight P at each x implies desirable consequences




The non-Euclidean case for Metzler Jacobians
Coogan '16: matrix measures of a Metzler matrix M

Given vectors 7,& > 0, and ¢ € R,

H1diag(n)(M)  <c — n"M<cn', and
uoo,diag(ﬁ)—l(M) <c — M¢ < c¢,

@ M Hurwitz <= M has negative weighted 1- or co-measure
(2] ni>n(l)cm 11, diag(n) (M) = glg,t, Hoo diag(e)-1 (M) = spectral abscissa of M

Sum-separable and max-separable Lyapunov functions

f with Metzler Jac is weighted 1-norm contracting if 9n > 0, and ¢ < 0
n' Df(x) <cn', forall x € R"

Constant column weights 1 at each x implies desirable consequences




Krasovskil Lyapunov functions

for systems with Metzler Jacobians and constant weights

Weighted diagonal 2-norm:

||X_X*HP_ZPI I_XI and Hf HP_ZPII
Weighted 1-norm

|x — x*

Ly = Y mibi = x| and [[F()]L, =Y milfi(x)]
i=1

i=1
Weighted oco-norm

Xi — X* f;
=Xl = max P g et = max L0
) i€

e{lny & {Lony &

Recall: sublevel sets of Lyapunov functions are f-invariant



Example application to Lotka-Volterra

© change of variable y = Inx, so that x € RZ; maps into y € R"” and
y =Aexp(y) + r = five(y)
@ pick v > 0, such that vI A < 0, and show
v Dfive(y) = v' Adiag(exp(y)) < —cv ' diag(exp(y)) < 0.

© five, and so fy, has a unique globally exponentially stable equilibrium
with sum-separable global Lyapunov functions

Hy_y* 1,diag(v) and ”fLVe(Y)Hl,diag(v)

that is,

x»—>Zv,-||n(x,-/x,-*)|, x»—>Zv,-[(AX—Fr),-|
i=1

i=1



Why is this relevant for infrastructure networks?

Consider a network flow system x = f(x) preserving a commodity
constant = 17 x(t)
= 0=1]x(t) = 1] f(x(t))
— 0, =1, Dfx(t)

If additionally f has Meztler Jacobian, then f is automatically weakly
contracting (non-expansive) with respect to the ¢; norm.
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Kuramoto Synchronization (existence)

o S. Jafarpour and F. Bullo. Synchronization of Kuramoto oscillators via cutset projections.
IEEE Transactions on Automatic Control, 64(7):2830-2844, 2019.
doi:10.1109/TAC.2018.2876786

@ problem statement
@ solution

Kuramoto Multi-Stability (lack of uniqueness)

S. Jafarpour, E. Y. Huang, K. D. Smith, and F. Bullo. Multistable synchronous power
Q flows: From geometry to analysis and computation.

SIAM Review, January 2019.

Submitted.

URL: https://arxiv.org/pdf/1901.11189.pdf
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Today: Sync & Multi-Stability in Coupled Oscillators

H

o n oscillators with angle §; € S!

o coupling with strength a; = aj;

-

\
I
e non-identical natural frequencies w; € R! i /

n
- Z ajj sin(0;
Jj=1




Model #1: Spring network analog and applications

Coupled swing equations
Euler-Lagrange eq for spring network on ring:

m,-é,- + d,'é,' =T — Z kU sin(G,- — 91)
J

Kuramoto coupled oscillators
9,‘ = Wj — Zj ajj sin(<9,- — 91)

Kuramoto equilibrium equation

0= Wi — Z ajj sin(9,- — 9_/')
J



Model #2: Active Power Flow Problem

AC, Kirckhoff and Ohm, quasi-sync, lossless lines, constant voltages.

supply/demand p;, max power coeff aj;, voltage phase 6;

n .
pi= ijl fij, f; = ajsin(0; — 0;)

power flow

f ij

0 30 60 90 120 150 180
power angle 6; — 6,

Given: network parameters & topology, load & generation profile,



Phenomenon #1: Transition from incoherence to sync

Function = synchronization 2 n .
0; = wj — ijl ajjsin(0; — 0;) J

0i(t) 0it)

10 20 30

5 10

large |w; — wj| & small coupling ~ small |w; — wj| & large coupling
= incoherence = no sync = coherence = frequency sync



Phenomenon #2: Multiple power flows

Theoretical observation: multiple solutions exist

Practical observations:
sometimes undesirable power flows around loops
sometimes sizable difference between predicted and actual power flows

Figure 8: Average unscheduled flows for the years 2011 and 2012, MWh/h®
DK

Miso

Average counter-clockwise direction of Lake Erie Loop Flow
Il rvereg ; TS —————

New York Independent System Operator, Lake Erie THEMA Consulting Group, Loop-flows - Final ad-
Loop Flow Mitigation, Technical Report, 2008 vice, Technical Report prepared for the European
Commission, 2013
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Primer on algebraic graph theory (slide 1/2)

Weighted undirected graph with n nodes and m edges:

Incidence matrix: n x m matrix B s.t. (BTPactv)(ij) =pPi—Ppj
Weight matrix: m x m diagonal matrix A

Laplacian stiffness: L =BABT >0

Linearization of Kuramoto equilibrium equation:

Pactv = BAsin(B'0) =  p.aww~BA(B'0) =16

Algebraic connectivity:

A2(L) = second smallest eig of L

= notion of connectivity and coupling




Primer on algebraic graph theory (slide 2/2)

Laplacian linear balance equation

+
;
=
1=
<
S 3
> -<
> <
<
> 3
> <
> <
LAAAA
VYYVYV
o

(a) spring network (b) resistive circuit

Ltitfness X = fioad and Leonductance V = Cinjected

Laplacian linear balance equation: pacty = L8

if Zi pi = 0 in pacty = LG, then equilibrium exists : 0 = LTpactV

pairwise displacements: B0 = B L pycr,




From Old to New Tests

Question: Given balanced pycty, do angles exist satisfying

Pacty = BAsin(BT6)

Old Tests: Equilibrium angles (neighbors within /2 arc) exist if

||BTpact\,||2 < A2(L) for unweighted graphs (Old 2-norm T)
BT L pacty|loo < 1 for trees, complete (Old co-norm T)

==

New Tests: Equilibrium angles (neighbors within /2 arc) exist if

HBTLTpaCtVHQ <1 for unweighted graphs ~ (New 2-norm T)
1B L pactvlloo < g([Plsc) for all graphs (New oco-norm T)




where g is monotonically decreasing

y(x) +sin(y(x)) _ y(x) =sin(y(x))
X > — X > ‘

-1
y(x) = arccos(i n 1)

0.0




and where P is a projection matrix

P=B"LTBA = oblique projection onto Im(B ") parallel to Ker(B.A)

@ @
1~ 2
a’z @Q@

R”, Im( BT ® Ker(B.A)
edge space cutset space weighted cycle space
flow vectors cycle vectors

Q if G unweighted, then P is orthogonal and ||P|2 =1
Q if G acyclic, then P = I, and ||P|, =1
© if G uniform complete or ring, then ||P|lcc =2(n—1)/n <2




New Tests: Equilibrium angles (neighbors within /2 arc) exist if

HBTLTpact\,Hg <1 for unweighted graphs ~ (New 2-norm T)
1B L pactvlloo < (P loo) for all graphs  (New oco-norm T)

Unifying theorem with a family of tests

|<ﬂ

Equilibrium angles (neighbors within ~ arc) exist if, in some p-norm,
1B LT pactv|lp < Yerp(7) for all graphs (New ap T)

where nonconvex optimization problem:

ap(y) == min amplification factor of P diag[sinc(x)]




Proof sketch 1/2: Rewriting the equilibrium equation

For what B, A, psctv does there exist 8 solution to:

Pactv = BAsin(B'6)

STEP 1: For what flow z and projection P onto cutset/flow space,
does there exist a flow x that solves

Psin(x) =z

<= Pdiag[sinc(x)|x = z
< x = (Pdiag[sinc(x)]) "tz =: h(x)




Proof sketch 2/2: Amplification factor & Brouwer

STEP 1: look for x solving

x = h(x) = (P diag[sinc(x)]) "z

IDEA: assume ||x||, <~ and ensure ||h(x)|, < v )

STEP 2: if one defines min amplification factor

ap(y) := min  min [P diag[sinc(x)]y|p
Ixllp<y llyllo=1

then  [[A(x)[|, < max myaxH(Pdiag{sinC(X)])*lyllp =l

= (mXin myin HPdiag[sinc(x)]y||p)_1Hz||p < Azl

ap(')’)

STEP 3: ||z||, < vap(7), then ||h(x)||p < 7 so that h satisfies Brouwer



Comparison of sufficient and approximate sync tests

Any test predicts max transmittable power (before bifurcation).
Compare with numerically computed.

ratio of test prediction to numerical computation

Test Case old 2-norm  new oo-norm  g(||Pllsc) ®1 oo test
approximate fmincon
IEEE 9 16.54 % 73.74 % 92.13 % 85.06 %
|EEE 14 8.33 % 59.42 % 83.09 % 81.32 %!
IEEE RTS 24  3.86 % 53.44 % 89.48 % 89.48 %!
IEEE 30 2.70 % 55.70 % 85.54 % 85.54 %!
IEEE 118 0.29 % 43.70 % 85.95 % —*
IEEE 300 0.20 % 40.33 % 99.80 % —
Polish 2383 0.11 % 29.08 % 82.85 % -

t fmincon with 100 randomized initial conditions
* fmincon does not converge



Summary: Kuramoto equilibrium and active power flow

Given topology (incidence B), admittances (Laplacian L), injections pacty,

pi = Zj:l ajj sin(0,- - 91')

Equilibrium angles exist if, in some p-norm,
||BTLTpactv||p < yap(7y) for all graphs (New ap T)
For p = oo, after bounding,

18T LT pacvlloo < &(IIPllc) (New oc-norm T)

v

Q1: I a stable operating point (with pairwise angles < 7)?
Q2: what is the network capacity to transmit active power?
Q3: how to quantify robustness as distance from loss of feasibility?
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Synchronization (existence)
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Phenomenon #2: Multiple power flows

Theoretical observation: multiple solutions exist

Practical observations:
sometimes undesirable power flows around loops
sometimes sizable difference between predicted and actual power flows

Figure 8: Average unscheduled flows for the years 2011 and 2012, MWh/h®
DK

Miso

Average counter-clockwise direction of Lake Erie Loop Flow
Il rvereg ; TS —————

New York Independent System Operator, Lake Erie THEMA Consulting Group, Loop-flows - Final ad-
Loop Flow Mitigation, Technical Report, 2008 vice, Technical Report prepared for the European
Commission, 2013



Lack of uniqueness and winding solutions

Given topology (incidence B), admittances (Laplacian L), injections pacty,

n .
pi = Zj:l ajj Sln(e,' - 91‘)

© is solution unique?

@ how to localize/classify solutions?

triangle graph, homogeneous weights (aj = 1), pactv =0

Q@ TEETEITEE\O@

phase sync splay state




Winding number of n angles

Given undirected graph with a cycle o = (1,..., n,) and orientation

@ winding number of § € T" along ¢ is:

Wo(9 Z dcc 9/7 91—1—1
=
w(f) =0 w(f) = +1
@ given basis 01, ...,0, for cycles, winding vector of 0 is

w(0) = (W, (0),- .., Wy (0))



“Kirckhoff Angle Law" and partition of the n-torus

Theorem: Kirchhoff angle law on T"

we(0) =0,%1,...,£|n,/2|
= w(0) is piecewise constant
= w(0) takes value in a finite set

|<ﬂ

Theorem: Winding partition

For each possible winding vector u, define
WindingCell(u) := {0 € T" | w(0) = u}

Then
T" = U, WindingCell(u)




Winding partition of triangle graph

@ each winding cell is connected

@ each winding cell is invariant under rotation

decl02,03)

@ bijection:
reduced winding cell +— open convex polytope

dec(6r.62)



The Kuramoto model and the winding partition

Given topology (incidence B), admittances
(Laplacian L), injections pacty,

é,’ = pj — Zj ajj sin(9; — «91')

Theorem: At-most-uniqueness and extensions

@ each WindingCell has at-most-unique equilibrium with Af < /2
@ equilibrium loop flow increases monotonically wrt winding number
@ existence + uniqueness in WindingCell(u) with A0 <7 /2 if

IBT Lt pacty + Culos < g(||P]lc), oF (Static T)
3 a trajectory inside WindingCell(u) with A@<7/2 (Dynamic T)

v




Summary and Future Work

c 44 L
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averaging compartmental flows mutualism virus spread coupled oscillators social systems

Review
© a rather comprehensive theory of linear network systems

@ an emergent theory of nonlinear network systems based on
contractivity and monotonicity

© existence and multistability for Kuramoto

Future research
O a little bit more on Metzler matrices
@ much work on monotonicity and contractivity
© applications to other dynamic flow networks

© outreach/collaboration opportunities for our community with
sociologists, biologists, economists, physicists ...



