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An evolutionary approach to coordination of
self-interested agents

Carry out the task repeatedly; adjust strategies each time
e each time the task is taken as a group game
e new insight into how cooperation emerge as an evolutionary outcome



The paradox of cooperation

Natural selection is based on competition. How can it lead
to cooperation?

Cooperation is often costly for the individual, while benefits
are distributed over a collective

Charles Darwin
(1809-1882)
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Cooperation (altruism) is an evolutionary puzzle!



Mechanism for evolution of cooperation is a central topic
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Five Rules for the Evolution
of Cooperation M. A. Nowak,

Martin A. Nowak SCIenCe,

V314,
Cooperation is needed for evolution to construct new levels of organization. Genomes, cells, 1 1
multicellular organisms, sodal insects, and human society are all based on cooperation. Cooperation 560- 563;
means that selfish replicators forgo some of their reproductive potential to help one another. But 2006

natural selection implies competition and therefore opposes cooperation unless a specific mechanism
1s at work. Here | discuss five mechanisms for the evolution of cooperation: kin selection, direct
reciprocity, indirect reciprocity, network reciprocity, and group selection. For each mechanism, a simple
rule is derived that specifies whether natural selection can lead to cooperation.

« Kin selection

« Direct reciprocity (“tit-for-tat”)

 Indirect reciprocity

»  Network reciprocity rich theory — limited predictive power...

* Group selection



Free-rider problem: the Prisoner’s dilemma

cooperate defect
cooperate b-c -C
I
¥ ¥
defect b 0
b>c>0

Mutual cooperation more profitable than mutual defection

But: under all circumstances defect is the dominating strategy



At group level: Public goods game

PARTNERSHIP FOR THE PUBLIC G OOD

Everybody profits from public good, whether contributing or not

‘ Erosion of the public good



Evolutionary game theory: History and motivation

- et

John Maynard Smith was interested
in why so many animals engage in
ritualized fighting (“The logic of
animal conflict”, Nature, 1973)

Evolutionary game theory (EGT) refers to the study of large
populations of interacting agents, and how various behaviors and traits
might evolve.

Differences from classical game theory

 Players = sub-populations, employing a common strategy
« Strategies = behaviors that learn to update or traits encoded in genes
« Payoffs = fitness, which determines update or reproductive rates

Key concept: The fitness of an individual must be evaluated in the
context of the population in which it lives and interacts



Outline

Evolutionary game model: replicator dynamics

Two-population dynamics with environmental
feedback

Controlling evolutionary network dynamics using
iIncentives




Dynamical system description for evolutionary games

Matrix game (symmetric two-player normal form with finitely many strategies)

Pure strategies: €1,€2,...,€en unit vectors in R™
Mixed strategies: p = (p1,...,pm) € A™

where A™ — {p\ Z?;Pz' — 1}
p; =0

« Payoff: Individuals interact in a two-player game

« Let m(ei,e;) be the payoff of ¢; against ¢;,
then the m-by-m payoff matrix A has entries A;; = m(e;, e;)

« The payoff of p against gis  7(p,q) Z pim(ei, e;)q; = pT Ag

t,7=1
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Dynamical system description for evolutionary games

Matrix game (symmetric two-player normal form with finitely many strategies)

Assumptions:

« Well-mixed large population (all-to-all network)

 Random pairwise interaction per unit time

« Payoff translate directly into fitness that determines reproductive rate
* Individuals use pure strategies

Key concept: The fitness of an individual must be evaluated in the
context of the population in which it lives and interacts

Let x; (f) denote the share of those individuals using strategy e; at
time t, and x = [x4, X,, ..., X,] be the population vector. Then

« The payoff of p against gis  7(p,q) Z pim(ei, e;)q; = pT Ag

t,7=1

Replicator dynamics: ; = z;(w(e;, x) — m(x, x))

11



Evolutionary game dynamics

Replicator dynamics: ; = z;(w(e;, x) — m(x, x))
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Evolutionary game dynamics

Replicator dynamics: ; = z;(7(e;, x) — m(x, x))

Central topics:

« Will the solution converge? If so, will it converge to the Nash
equilibrium of the game?

« Which equilibrium is evolutionarily stable?
« Are the stable solutions also opfimal maximizing some or all

players’ payoffs?

“A survey on the analysis and control of evolutionary matrix games,” J. R.
Riehl, P. Ramazi and M. Cao. Annual Reviews in Control, 45(6), 87-106, 2018
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Environmental feedback

/~ The Tragedy of the Commons

Use of the commons is If one or more users increase Unless environmental
below the carrying the use of the commons costs are accounted for
capacity of the land. All beyond its carrying capacity, and addressed in land use
users benefit. the commons becomes practices, eventually the
degraded. The cost of the land will be unable to
degradation is incurred by support the activity.
all users. \ /

14




Environmental feedback

« Known:

Individuals’ actions can reshape the
surrounding environment.

Recent report:

« Changes in the environment
modulate the payoffs, leading to

* Unknown environment-dependent payoff
Does the environment affect matrices
individuals’ decisions? If so, how? C D

o (o o)

Replicator dynamics with game-
Individual environment feedback for a single
actions population [Weitz, 2016, PNAS].

15



Co-Evolutionary game dynamics

For multiple populations of individuals, how will the population
dynamics co-evolve with the environmental dynamics?

environment

This results in two layers of coevolution:
1. coevolution of multiple populations of individuals;
2. coevolution of populations and the environment.

16



Outline

Evolutionary game model: replicator dynamics

Two-population dynamics with environmental
feedback

Controlling evolutionary network dynamics using
iIncentives




Two-population replicator dynamics

- Replicator dynamics for the matrix game with strategies {ei, ...

t; = xi(m(es, x) — m(x,)),

« Two-population replicator dynamics
pf :pf[Uzk(p) _Uk(p)]a k= L,2
where pf is the proportion of individuals in population & using s:.

« We use x and Y to denote the states of the two populations.



Payoff matrices with environmental feedback

Individuals from population 1 interact with individuals from population 2,
and vise versa.

Dynamic payoff matrices Capr b1y ... Gt 4 b |
A(r)ia = : :
@1 T + 01 oo QT+ b |
[ ciir4+din ... cimT +Fdim |
A(r)e =
Cr1T +dm1 oo CoumT + dpm

Dynamics of the environment
r=r(1l—-r)h(x,y)

where h(x,y) denotes the impact of population states on the environment,
which may enhance or degrade resources.

19



Co-evolutionary game dynamics model

Consider
h(z,y) = ZM%‘ - Z:L”—z' T ijyj - Zy—j
i€S JES
with u; > 0, p; > 0 representing the ratios of enhancement to degradation.

Replicator dynamics with environmental feedback:

r

i = 2 [(A(T)12y); — xTA(r)12Y]
Y9y =yl(A(r)aix); — vy A(r)a1x]
=11 =) jes(mimi + pjy;) — (@—i +y—;));

where :
(:ci,yj,’r') c ) Am_l X Am_l X [[0,1]

20



Specific payoff matrices

Consider the following asymmetric payoff matrices

A(r) = (1 1) [;?1 ngrr[Rl Sl}

T, P
B Ty Py Ry 59
B(r)y=(1-r) |:R2 82] +7r [TQ PJ

with P > 51,11 > Ri; Py > 55,15 > Rs.

Each matrix has an embedded symmetry to ensure that mutual cooperation
is a Nash equilibrium when r = 0 and mutual defection is a Nash equilibrium
when r= 1.

Then the dynamics become
i =z(1 —z)[0ps, + (6rr, —dps,)yl(1 —2r)
21 . y = y(l — y)[5p5’2 + (5TR2 - 5p52):13](1 — 27’)
r=r1—7)[(1+01)x+ (1+62)y — 2]
with dps, = P, — S; >0, 7r, =T; — R; > 0 and 6, is the
enhancement to degradation ratio in population k.




Observation from simple computations

Invariant cubic domain Ij ;; = [0, 1]°
eight isolated fixed points and one set of interior fixed points
3

{(wyy,r) (L 00z + (L4 0)y =27 = 3

The eight corner fixed points are unstable
The eigenvalues at the interior equilibrium are
A1 =0 )\ngi\/fi,K>0

* simulations | / /

wae 2>

0
(b) Periodic Orbits
22
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Main result to prove

Theorem

The two-population co-evolutionary game dynamics
have infinitely many periodic orbits in the interior of
I[?()),l] — [0, 1]3 .

23



Viewpoint 1: Reversible system

« Reversible system

A dynamical system is said to be reversible if there is an involution G
in its phase space which reverses the direction of time, i.e. the
dynamics are invariant under a change in the sign of time.

 Periodic Orbits

An orbit (not a fixed point) is periodic and symmetric with respect to G
if and only if the orbit intersects Fix(G) at precisely two points.

T = CIZ‘(l - ‘/'C)[5PS1 + (5TR1 - 5P5’1)y}(1 - QT)

Forsystem s .8 g = y(1 — y)0ps, + (Orm, — Ops,)2](1 — 2r)
r=r(1—r)[(1+61)x+ (1+602)y — 2]
one can find G:x—x,y—>yr—1—r

Fiz(G): {r=1/2}

such that >, §> il §> ¥,

24



Viewpoint 1: Reversible system

Divide 1j ,, = (0,1)* into four
regions by the two planes

{r=1/2}
{(1+6))z+ (1+6)y =2}

oo

05

1
le{g<T<1,(1+(91)$+(1+92)y>2}

QQ:{%<T<1,(1+91)$+(1+92)y<2} | .
A typical trajectory

Q3:{0<r< %, (1+61)z+ (14 602)y < 2} Consider an arbitrary trajectory starting from
point q;

it goes across the plane {r = 1/2} and into (3
crosses plane {(1 + 6;)x + (1 + 6)y = 2}

and enters 24;

then crosses plane {r = 1/2} again;

returns to the starting point and forms a periodic
orbit.

1
Q4:{0<7’<5,(1+91)$+(1+92)y>2}

25



Viewpoint 2: Hamiltonian theory

For system >, , apply a change of variable
a = p2(y) — p1(z)
where o, (z) = In(x) — 522 In(1 — 2); p1(y) = In(y) — 722 In(1 — )

6}:"51 PSo

Apply globally real-analytic diffeomorphism
¢ (x,y,7r) € IE)OJ) — (z,a,7r) € 1(2011) x R

arrive at

( 3, { 2 =2z2(1-2)0ps, + (0TR, — 5P5'1)C,02_1(a + ©1(2))](1 —27r)

Sn : ¢ P = (1= 1)1+ 01)z+ (1+02)p3 (a + ¢1(2)) — 2]

L a=0

26



Viewpoint 2: Hamiltonian theory

Constant of Motion
For each a, there exists such a Hamiltonian function for system X,

H,(z,7) = H, o(2) + H.(r)
H,.(r) =6ps,(In(r) + In(1 — 1))

z —1 .
PR g EUV.EUESLT RS T B
172 T(1 =7)(0ps, + (0rr, —0ps, )y (a+ ¢1(7)))
satisfying : 0OH,. O0OH,.
Hy(z,7) = 9 z+ o r =0

Level Sets and Closed Orbits

( 3, { 2 =2z2(1-2)0ps, + (0TR, — 5P5'1)902_1(a + ©1(2))](1 —27r)

Sn : ¢ P = (1= 1)1+ 01)z+ (1+02)p3 (a + ¢1(2)) — 2]
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Viewpoint 2: Hamiltonian theory

Constant of Motion
For each a, there exists such a Hamiltonian function for system X,

H,(z,7) = H, o(2) + H.(r)
H,.(r) =6ps,(In(r) + In(1 — 1))

z —1 .
PR g EUV.EUESLT RS T B
172 T(1 =7)(0ps, + (0rr, —0ps, )y (a+ ¢1(7)))
satisfying : 0OH,. O0OH,.
Hy(z,7) = 9 z+ o r =0

Level Sets and Closed Orbits

Each level set of the constant of motion is a periodic orbit except for the
unique maximum.

Go back from X2 to 1

Since ¢ is a globally real-analytic diffeomorphism, the above result is
applicable to the original coordinates.

28



Viewpoint 3: Volume preserving

For more general payoff matrices and multiple strategies, the
periodic orbits may still exist.

The generalized system

&; = 2 [(A(r)12y )i — x" A(1)12y]

Ui = Y;il(A(r)a1x); — YTA(T)21X]

| r=r(l- T)[Zi,jesl (piwi + pjy;) — D (x—i +y—j)],

with (2i,y;5,7) € Q: A™"Lx Am=1x Iy

>

N

Consider separately fixed points on the boundary and in the interior .

29



Viewpoint 3: Volume preserving

Introduce 7=1-r (i = i[(A(r)12y)i — xTA(1)12Y]
3 — ¢ yj = ?JJ[(A(T)MX)J' —y A(r)21X]
{ =77} ses, (Hii + pjys) — 2o (2—i +y—;)]

“3!

gl
[Zi,jesl(Z(ﬂf—i +y—j) — wizi + py;)]

the state space becomes : A™ 1 x A1 x Al

“3!

1 .
Adjust by multiplying a positive function f = AT int @ = R,
7 ? =

yields

(&= [( (r)12y)i — xTA(r)12y]

(I_T)H le_[
i = =7 H T yj [( (r)21%); =y A(r)21x]

1
TR R7REE R 3

- 1
\ T H:n Lq H;n Yj 2 (@i +y—s) = ZWESl (Hizi + pjy;).

Record compactly R(X)

X = I(X) diag(X) F(X)

o

£(X)
30



Viewpoint 3: Volume preserving

[Liouville theorem]

Consider © = £(x) defined on the open set U, if G C U has volumeV,
then the volume V (t) of G(t) satisfies

d :
—V(t) = /G(t) tr(DE&(x))d(xq, ..., xn) = /G(t) div {(x)d(xq, ..., xy).

dt
Orthogonal projection matrix:  — T

1
= diag(®™, ™, ®%), " =1- —1'1,,
m

Computation of the Derivative and Divergence
DE(X) =TI(X)DR(X) + R(X)VII(X)T
- (H(X)DR(X) + R(X)vﬁ(X)T) &

U’ The volume is incompressible
divé(X) =0 in int €2, i.e., volume-preserving.
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Agents’ updating rule

Replicator dynamics at the population level in continuous time
correspond to the imitation updating rule at the agent level in discrete
time where agents maximize payoff against current neighbor actions.

Imitation: agents copy the action of the highest earning neighbor.

S;"“"’(r) — set of strategies earning the maximum payoff in the
neighborhood of agent i:

S(t) = {Xj(f) (y;(f) = kemﬁ{f}yk(f)}-
(A sM(t) = {A}
xi(t+1)={B SM(t) = {B}
xi(t) SM(t) ={A. B}

33



Incentive-based control of A-coordinating networks

Suppose we can offer an incentive r for taking a particular action.

A B
Alatr bxr : a.b.c.d.reR
B c d

How much would it cost to have all agents converge to A?

Cases:

« Uniform incentives

« Targeted incentives

« Targeted incentives subject to a budget constraint

34



Uniform incentive-based control

All agents receive the same incentive

A B
Al ai+r bi+r : aj, bj,ci,di e R
B Cj dr'

Find the minimum value of the uniform incentive such that the entire
network converges to A?

« A-coordinating: any agent who updates to Strategy A would also do so
if some agents currently playing B were instead playing A

« A-monotone: Offering incentives to play A will never lead to an agent to
switch away from A

« Uniquely-convergent: Offering incentives leads to a unique equilibrium

Theorem: Every network of A-coordinating agents is A-monotone and
uniquely convergent.

35




Uniform incentive-based control

Proposition:
One can construct a finite set R that contains r*

Because of the A-monotone property, one can carry out the binary search:

3 3
R: n m o on ok mnn

Theorem:
Within finite steps, binary search solves the uniform reward problem

36



Targeted incentive-based control

Suppose it's possible to offer different rewards to individual agents:

A B
Alait+rn bitr . aj.bj.ci.di e R, ri € R>g
B Cj d,' N
Problem 1: Find r =(rq, ..., rp) that minimizes » . r such that

the entire network converges to A.

Problem 2 (budget constraint): Find r that maximizes the
number of agents who converge to A subject to } . r < p.

37



Targeted incentive-based control

Computationally complex to solve exactly (conjectured to be NP)

We can compute the incentive Fj needed such that at least one
A-neighbor will switch to B

fi = max max yi, — Vi,
j E.-'h\'l:.B .I[C E.-"\-I;B

where N7 .= {j e N;U{i} : x; = B}.

Algorithm: Iteratively choose agents to switch until the desired equilibrium is
reached or the budget limit is exceeded.

38



Targeted incentive-based control

How should we choose these agents?

Several possibilities: max degree, min required incentives, etc.

Approach: Iteratively maximize a benefit-to-cost ratio
Benefit = # of agents who switch to A, cost = incentive

Ad(x)°
¥

, where Ad(x) = O(x(t2)) — P(x(t1)).

max
!

n

®(x) = Z”ﬁ(x)- cv and 3 are design parameters.
i=1

39



Simulation results: Uniform vs. Targeted incentives

Best Response

1 —
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o ;
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Conclusions and outlook

Conclusions:

1)

Use a generalized co-evolutionary model to study population game
dynamics with environmental feedback;

2) Analysis of the model under specific payoff matrices;

3) Different methods to prove the existence of periodic orbits;

4) Volume-preserving property is disclosed;

5) Incentives help to drive coordinating networks towards desired
equilibria

6) Targeted incentives are more efficient than uniform incentives

Outlook:

Extensions to different types of games
A general framework for controlling evolutionary games using
environmental feedback
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