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Motivation

* Highway congestion is a worsening problem in most cities of the
world

e Traffic control techniques are relatively inexpensive ways to address
traffic congestion (low cost vs. building new roads)

e Various control methods based on PDE flow models (such as the
LWR flow model) have been investigated in the past

* Flow control problems are associated with significant uncertainties,
including model noise and uncertainty on the initial state of the
system .
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Background

- Traffic flow model (LWR): derived by Lighthill-Whitham (1955), Richards (1956)
- First order scalar hyperbolic conservation law

Op(t,z)  Ov(p(t, 2))
ot Ox
- Based on two assumptions:
- conservation of vehicles
- existence of a relationship between flow and density: g=(p)
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[Newell 93], [Daganzo 03,06] [Aubin Bayen Saint Pierre 08]  Density p (veh/mile)
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Hamilton-Jacobi formulation

Equivalently, we can define M(t,x) such that:

T ta

M(ta, za) — M(t1,21) = ] pltr,o)dz+ [ (p(t, x2))dt

r1 tq

The function M (t, x) is the cumulative number of vehicles function, also called

Moskowitz function. Its spatial derivative is the opposite of the density function; its
temporal derivative is the flow function.

Integrating the LWR PDE, M (t, x) solves the Hamilton-Jacobi PDE:

8M(f,-¢:) Y (_ dl\/Ia(f ;,z.-)) _ 0

[Newell 93], [Daganzo 03,06] [Aubin Bayen Saint Pierre 08]
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Semi-analytic computational methods
e Many existing computational methods:

e For LWR:
- Godunov scheme (or equivalently CTM)
- Wave-front tracking
- Other finite difference schemes (ENO, WENO)
e For HJ:
- Lax Friedrichs schemes (or other numerical schemes)
- Variational method (dynamic programming)

- Semi-analytic method (for homogeneous problems), which can
be used for both HJ and LWR

[Daganzo06] [Claudel Bayen IEEE TAC part | & 2, 2010] [Mazare Dehwah Claudel Bayen, TR-B 2012]
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Semi-analytic computational methods

Based on the classical Lax-Hopf formula
For a boundary data function c(.,.), the solution M (.,.) is given by:

M (t,x) = inf (c(t =T, x4+ Tu)+ Ty (u))
TyeDom(p*)xR

is the convex transform of

Can be solved using dynamic programming on a grid (Variational

Theory) [Daganzo06]

If model parameters are time-space independent, we can exploit
the structure of the dynamic programming problem

[Lax 1973] [Aubin Bayen Saint Pierre SIAM SICON 2009] [Claudel Baven IEEE TAC part |1 2010]
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Semi-analytic computational methods

We use a piecewise linear decomposition of the boundary data

(which amounts to taking piecewise constant initial densities and
boundary flows)

—
N(x,t) e

Let us compute the solution to a //
single piece of linear initial condition /

[Claudel Bayen IEEE TAC part 1l 2010] [Mazare Dehwah Claudel Bayen, TR-B 2012]
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Semi-analytic computational methods

We use a piecewise linear decomposition of the boundary data

(which amounts to taking piecewise constant initial densities and
boundary flows)

—
N(x,t) e

Let us compute the solution to a //
single piece of linear initial condition /

_J wr+ b df x € [, @i
Mp; (0, x) = { +00 otherwise

Physically: constant initial density in a spatial interval
no information elsewhere

[Claudel Bayen IEEE TAC part 1l 2010] [Mazare Dehwah Claudel Bayen, TR-B 2012]
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Semi-analytic computational methods

Single piece of linear initial condition:

_ a;x + b; Zf T & [@@,@@'jLﬂ
Mo (0, x) = { +00 otherwise

Associated Lax-Hopf formula:

Mg, (f,7) = mf(ase ) + b+ 1" ()
weDom(p*)n [ iz, ai—l'tl_x}

1D convex optimization problem in u

~_ L/

Can be solved analytically

[Claudel Bayen IEEE TAC part Il 2010] [Mazare Dehwah Claudel Bayen, TR-B 2012]
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Semi-analytic computational methods

Solution structure:

We use subgradients to find the optimum u ( () _tw'[_ﬂ’i) T &I b"E .
. . g . if wo(a;) € [, 45—
since Y is not necessarily differentiable (i) @ + b; + to® (T=2)
M, ilt, z) = e ey mew
0.i(t, ) if wo(a:) <=5 )
(i#i)  ailier + by + to" (T
if ug(a;) > Tee=<

t

= 8

V(p)

position

—_— (iii)

PN
_ E (i) — uo(ai)

flow
g

w*(uo(ai))

—a; density

[Claudel Bayen IEEE TAC part Il 2010] [Mazare Dehwah Claudel Bayen, TR-B 2012]
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Semi-analytic computational methods

Solution structure:

We use subgradients to find the optimum u ( () it;bi_?;]_;r;;g:}am_m]
since Y is not necessarily differentiable " BEG &iﬁiDJr ;l_ N w*‘*(al;z ]*
Data Mu-.t'(t:-rﬂ:] = 4 if ug(as) < E;t—m -
(I (a@) S —6+1,b(—a@-) | Model (7d) @01 +b; -tf'fﬁ‘*{cmr—;l_m}
\ if wug(a;) > =H—

= 8

V(p)

position

—_— (iii)

PN E

(i) — uo(a;)

flow
g

w*(uo(ai))

density

[Claudel Bayen IEEE TAC part Il 2010] [Mazare Dehwah Claudel Bayen, TR-B 2012]
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The Lax-Hopf algorithm

Inf-morphism property

Let c(., .) be a function representing the initial conditions and
boundary conditions

V(t,z) € [0, tmaz] X [§, x|, e(t,x) = 1;}[16151 ci(t,z)

The solution is the minimum of partial solution components

(t, ) € [0, tmaal X [€;x],  Me(t, ) = min Me, (¢, z)

Semi analytical property
If ¢;(+,-) is linear, the function Mcj(-,-) can be computed

analytically



The University of Texas at Austin

Civil, Architectural and

Environmental Engineering
Cockrell School of Engineering
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The Lax-Hopf algorithm

Inf-morphism property

Let c(., .) be a function representing the initial conditions and
boundary conditions

V(t,z) € [0, tmaz] X [§,x], c(t,x) = 1’3[161? ci(t,z)

The solution is the minimum of partial solution components

V(¢ 2) € [0, fmas] X [€,x],  Me(t, ) = min M, (¢, 2)

Semi analytical property
If ¢;(+,-) is linear, the function MC].(-,-) can be computed

analytically
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lllustration of the Lax-Hopf algorithm

(LX) T[0t,] " [x c].c(t x) =minc, (t,X)

iTd
The solution associated with the above boundary data function can be
decomposed as:

" (t,X) T[0,t,] " [% €], Mc (t. X) =minM_ (t, X)

iTJ ,
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Compatibility conditions for existence of strong solutions

Compatibility conditions: g, (t,z) > ei(t,z), ¥(t,z) € Dom(c:),¥(i, j) € J2

Compatibility conditions with (M, (0,2p) = Mp(0, xp) Y(k,p) € K?
initial, upstream and downstream M, (T, x) = Bp(pT, X) vke K, YpeN
boundary conditions My (3575 2 Bp(35%5,x) Vke K, WpelN
< 8.1 % el(p—1)T,pT)
My, (pT, §) = 7p(pT, §) vke K, YpeN
Mg (5551 8) > yp (2 €) VEe K, YpeN
\ s.t. g_iﬁ € [(p— 1T, pT]
(17)
(M, (pT,€) > 7(pT, €) ¥(n,p) € N*
M, (pT, x) = Bp(pT, x) ¥(n,p) € N?
M, (nT + ’f_—ff X) = By(nT + %,X) Y(n,p) € N2

\

. Initial condition
. Upstream boundary condition
. Downstream boundary condition

st. nT + X5 € (p—1)T,pT]
(18)

Mg, (pT. &) = v (pT, ) ¥(n,p) € N?
Mg, (nT + 52X, £) = 3p(nT + 52X,£)  ¥(n,p) € N?
st. nT+5X €[(p—1)T,pT]

Mp, (pT.x) = Bp(pT, x) ¥(n,p) € N*
(19)
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Compatibility conditions for existence of strong solutions

Compatibility conditions: g, (t,z) > ei(t,z), ¥(t,z) € Dom(c:),¥(i, j) € J2

Compatibility
initial,

conditions with
and downstream

boundary conditions

(M), (0, ) > M, (0, x,)
41{;1“. (pTJ X} :_} ,Bp(pT‘ X)
ﬂfﬂlh.(x;;.rk "X) = ﬁp(%v X)

Mg, (T, €) g (r T )
Mg, (nT + £X.¢) >

(nT + X5, X) > fp(nT + X5
st. nT + xb—f

Y(k,p) € K*?
YVke K, YpeN
YVke K, VYpeN

< 8.1 —x;f’*' el(p—1)T,pT)
M, (pT, £) :gl(pT, €) Ve K, YpeN
My, (55=2,8) > gp(i=2=2,§) Vke K, VYpeN
\ st 2 e [(p—1)T, pT]
(17)
(pT.€) = BplsT, ) ¥(n,p) € N?
(rT, x) = Bp(pT, x) ¥(n,p) € N?

,x) ¥(n,p) € N?

€ [(p— 1T, pT]
(18)

Y(n,p) € N2

nT + 52X &) ¥(n,p) € N?

st. nT+5X €[(p—1)T,pT]

Mg, (pT,x) =By (T, x)

¥(n,p) € N2
(19)
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Compatibility conditions for existence of strong solutions

Compatibility conditions: g, (t,z) > ei(t,z), ¥(t,z) € Dom(c:),¥(i, j) € J2

Linear in boundary flows —=7;

\j*& . % € [(p - l}Ta pﬂ
M, (pT, _l(pT, €) Ve K, YpeN

My (21 ) >Jl(E0r &) vke K, WpeN

™

Compatibilit conditions  with
initial,ﬂand downstream

boundary conditions

/

Piecewise linear (concave)
in boundary flows

\

rﬂ_{_ﬂ,“_ ('D .

> Mp(0,xzp) v(k,p) € K*
. » By (pT, x) Yke K, YpeN
TSR, ) 2 B2, ek, WpeN

st Sl e [(p— 1)T, pT]

(17)
(pT.€) = BplsT, ) “(n,p) € N?
(rT, x) = Bp(pT, x) ¥(n,p) € N?

(?1T "" xb__ff'! X) 2 ﬁp{nT + xt;_E&X) "G’(n,p) < N2
st. T+ X5 € [(p—1)T,pT]
(18)

MG (T €) 23T, ) ¥(n,p) € N?
M, (nT + 35.6) 2 fnT + 55%.6) ¥(n.p) € N?

st. nT+5X €[(p—1)T,pT]

Msg, (pT, x) =B (pT’ X) ¥(n,p) € N?

(19)
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Optimization formulation of the boundary control
problem

* Let x be the vector of boundary flows. The compatibility conditions imply
that Ax < b

* Hence, if the objective function is linear in the boundary flows (e.g. when
maximizing outflows, or minimizing vehicle accumulation over a link), the

optimal boundary control problem becomes a LP:

min ¢’ x

st.Ax <b

.
’/) Max density
15 /

e The initial conditions only influence the right

x (m)

hand side vector b. The model parameters ()
influence both A and b

[Li Canepa Claudel (2014)] L
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Stochastic formulation

 In actual control problems initial condition and/or the model
parameters may be uncertain

« This can dramatically affect the results, since the solution to
the control problem may lead to worse congestion (when
applied to a real traffic scenario) than no control at all

* We assume that the initial condition has Gaussian uncertainty
Solution: use chance constrained-optimization (uncertainty
appears only in the constraints)

ﬂfﬂ-f;_. (np,'r:' é] = TP(pT:! &}; vk € K:l Hp EN

U

P(My, (pT,€) = 7p(pT,€)) 21—, Vke K, VpeN
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Stochastic model

How to convert the chance constraint:
P(Mu, (pT,6) = 7(pT,€)) 21—, Vke K, VpeN

into a deterministic (linear) expression?

Assume the uncertainty is normally distributed Pk ~ 1(pk, o)

Pe < Pk + 21—alk
P(Myg,, (pT,€) > (T, €)) > 1 —a & falpx +21-a0k) 2 1 (T, §)
If pe > pr+ 2100k ,
P(M,, (0T, €) > (0T, €)) > 1 —a & files +21-00k) 2 7(0T)¢)

Where f;(:) and f,(:) are linear
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Stochastic model

K (pk))

M, (t.5)

L(p(k))

pdf .

p(k)

Zl—a

p(k)

M, (t,5)

fi(pk))

2(p(k))

pdf,

_

p(k)
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Stochastic model

Chance constraints can be
equivalently reformulated
as linear constraints

P(Mp,, (pT,€) = 7(pT,€)) 2 1 — a4

Can be extended to other
probability functions (only
requires the knowledge of
the c.d.f.)

3

%

k—1 P
=Y P+ peTvs + (k= Dz =) > Y qin (T,
e (k—1X =
ife> S DX  and g b siaon <
w
k-1

. Z p()X + (p(k) + 21—aok) (tw + (k — 1)X — £) — pmtu

i=1
P

> Z gin ()T,
i=1

L E—(k—1X
w

£ — kX

w

<t<

and pr + Z1—a0k 2 Pec
k-1

- Z p()X — (p(k) + 21— aok)X + pe(tw + kX — £) — prtw

i=1
P

>Y (T,
i=1

ife> S and et z1aok > pe
w
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Example simulation

* Highway link (1 880, CA) of 3.8 km with 7 segments of constant initial
density

e Simulation time horizon of 7 minutes (28 time steps)

* Model parameters:
- Critical density: 0.03 /m;
- Free flow speed: 30 m/s;
- Jam density: 0.24 /m

* Means of initial densities are drawn in the range [0.01, 0.07];
* Four scenarios with g € {0.01, 0.02,0.03,0.04} are tested
 Confidencelevel 1 — a = 0.975



The University of Texas at Austin

Civil, Architectural and

Environmental Engineering
Cockrell School of Engineering

Example simulation

* Objective function: maximize total throughput

Max densty

Criticel dermity
Crilice dermity

D Zoro dansity -
0 50 100 150 200 250 300 350 400 L] 50 00 150 200 250 300 350 400
e js} e =}

(a) o = 0.01 (b) o = 0.02

Zaro density

Max densty Max densey

Critics darsity Critice dermity

D Zaro dansty D
a 50 100 130 200 50 300 350 400 0 50 00 150 200 250 300 50 400
e 2} e 5

Zaro densty

(c) o =0.03 (d) o = 0.024
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Example simulation

* Dual objective: maximize throughput and minimize accumulation

nmﬂ!
min =AY Gou(i) + (1-2)Q
i=1
i
st. Q=) (ain(j) — Gour(4)), VieN
i=1
. b
24.0- 1'2’_ o
. e - \
22,51 , _
§ ] / , 001 \
£ 21.0 . 2
< -0.6- 1
E 58 . -1.2-. \
18.0 00 02 04 06 08 10

00 02 04 06 08 10 ,
Weight 2 Weiaht A
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Network problem formulation

* Robust network boundary control problems can be handled similarly,
provided that every link is controlled (otherwise robust MILP)

min = — iEZ(h(qOu:(ﬁj) +qin(2,7))—

i=1 j=1
0(qin (i, 3) — qoue (i, 5)) — a5 (i, 3) — ai* (i, 5) — y(3))
st q8"(i,7) > Qout(inf) — qouti—1,), ¥i>2, jel
43" (i,3) = qout(i — 1,7) — qoue(3,5), ¥i>2, jeL
ai' (i) = qin(i,j) —qin(i —1,5), Vi>2, jelL
47" (,3) 2 qin(i — 1.3) — qin(i,5), ¥i=2, jelL
Y(1) = Niane(4)qout (i, 1) — Miane(1)qout (i, 4), Vi

y(*) > niane.(]-)‘hut(iu 4) - nfane(‘ﬁl)ql:rut(i: 1)1 Vi Higm";w:l{)@ L1 Y} 3 ) L3 @
an-ra

Qon (%, 1) 2 Gout(,2)/Nane(2), VieEN

1 off-
Gon(1,2) = Qout(4,4)/Niane(4), Yie N L4 off-ramp 1
Gout(i,3) < (p3), VieN .
QOuz('éaﬁ) < (ﬁﬁ), Yie N |
(35)—(39), VYjelL ighway 2
(27), YveV
out - - iy - . . ou Pl P2 in
Torse qwrzens  fe-E A e

QOut(éaj) >0, Qm(i:jJ >0 Vé, 7
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Simulation

Optimal boundary flows evaluated on the worst-case initial condition

Without Uncertainty

results

With Uncertainty
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Simulation results

e Optimal boundary flows
evaluated on the worst-case
initial condition

2400]  —mmmmmmmmmmmmeeee S 1
Ve 1600- '
= S000 4 | —_ !
3 | | 8
; 16004 = 12004
E b 3
= yannd—— Witheut uncertainty| | = — el
---- 'With uncertainty |/ s E.'ETI_;D;E:_T"W'
H:lu T T T L) T T T T T L) T T
0 100 200 300 400 50D 0 10ae 200 300 400 0 500
Tima(s) Teme [5)

(a) link 1 (b) link 4
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Conclusion and future work

* Boundary control problems (single link, non robust) can be
formulated as linear programs. Network problems (non robust)
are also linear programs (if all links are controlled)

* Initial condition uncertainty can be modeled as chance
constraints
e Limitations (future work)

- integrating joint chance constraints if the mode
(congested/uncongested) of each initial condition block is known

- Combine speed-boundary control and investigate the
corresponding robust control problem

- Investigate the robust control problem with model uncertainty
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