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Motivation
• Highway congestion is a worsening problem in most cities of the 

world

• Traffic control techniques are relatively inexpensive ways to address 
traffic congestion (low cost vs. building new roads)

• Various control methods based on PDE flow models (such as the 
LWR flow model) have been investigated in the past

• Flow control problems are associated with significant uncertainties, 
including model noise and uncertainty on the initial state of the 
system
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- Traffic flow model (LWR): derived by Lighthill-Whitham (1955), Richards (1956)

- First order scalar hyperbolic conservation law

- Based on two assumptions: 

- conservation of vehicles

- existence of a relationship between flow and density: q=ψ(ρ)

in this problem, ψ(.) is assumed to be concave

Background

[Newell 93], [Daganzo 03,06] [Aubin Bayen Saint Pierre 08]
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Equivalently, we can define M(t,x) such that:

The function 𝑀(𝑡, 𝑥) is the cumulative number of vehicles function, also called 
Moskowitz function. Its spatial derivative is the opposite of the density function; its 
temporal derivative is the flow function.

Integrating the LWR PDE, 𝑀(𝑡, 𝑥) solves the Hamilton-Jacobi PDE:

Hamilton-Jacobi formulation

[Newell 93], [Daganzo 03,06] [Aubin Bayen Saint Pierre 08]



Semi-analytic computational methods

• Many existing computational methods:

• For LWR:

- Godunov scheme (or equivalently CTM)

- Wave-front tracking

- Other finite difference schemes (ENO, WENO)

• For HJ:

- Lax Friedrichs schemes (or other numerical schemes)

- Variational method (dynamic programming)

- Semi-analytic method (for homogeneous problems), which can 
be used for both HJ and LWR

[Daganzo06] [Claudel Bayen IEEE TAC part I & 2, 2010] [Mazare Dehwah Claudel Bayen, TR-B 2012]



Semi-analytic computational methods

Based on the classical Lax-Hopf formula 

For a boundary data function c(.,.), the solution Mc(.,.) is given by:

where is the convex transform of ψ

Can be solved using dynamic programming on a grid (Variational
Theory)

If model parameters are time-space independent, we can exploit 
the structure of the dynamic programming problem

[Lax 1973] [Aubin Bayen Saint Pierre SIAM SICON 2009] [Claudel Bayen IEEE TAC part II 2010] 

[Daganzo06] 



Semi-analytic computational methods
We use a piecewise linear decomposition of the boundary data 
(which amounts to taking piecewise constant initial densities and 
boundary flows)

Let us compute the solution to a

single piece of linear initial condition 

[Claudel Bayen IEEE TAC part II 2010] [Mazare Dehwah Claudel Bayen, TR-B 2012] 
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We use a piecewise linear decomposition of the boundary data 
(which amounts to taking piecewise constant initial densities and 
boundary flows)

Let us compute the solution to a

single piece of linear initial condition 

Physically: constant initial density in a spatial interval

no information elsewhere

position
time

Semi-analytic computational methods

[Claudel Bayen IEEE TAC part II 2010] [Mazare Dehwah Claudel Bayen, TR-B 2012] 



Single piece of linear initial condition:

Associated Lax-Hopf formula:

1D convex optimization problem in u

Can be solved analytically

Semi-analytic computational methods

[Claudel Bayen IEEE TAC part II 2010] [Mazare Dehwah Claudel Bayen, TR-B 2012] 



Solution structure:

We use subgradients to find the optimum u

since ψ is not necessarily differentiable
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[Claudel Bayen IEEE TAC part II 2010] [Mazare Dehwah Claudel Bayen, TR-B 2012] 



Solution structure:

We use subgradients to find the optimum u

since ψ is not necessarily differentiable

Data

Model
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Semi-analytic computational methods

[Claudel Bayen IEEE TAC part II 2010] [Mazare Dehwah Claudel Bayen, TR-B 2012] 



The Lax-Hopf algorithm

Inf-morphism property

Let c(., .) be a function representing the initial conditions and 
boundary conditions

The solution is the minimum of partial solution components

Semi analytical property

If 𝑐𝑗(⋅,⋅) is linear, the function 𝑀𝑐𝑗(⋅,⋅) can be computed 

analytically
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Illustration of the Lax-Hopf algorithm

" t, x( ) Î 0, tmax[ ]´ x, c[ ],c t, x( ) := min
jÎJ

cj t, x( )

The solution associated with the above boundary data function can be

decomposed as:

" t, x( ) Î 0, tmax[ ]´ x, c[ ], MC t, x( ) = min
jÎJ

Mcj
t, x( )
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Compatibility conditions for existence of strong solutions

Compatibility conditions:

Compatibility conditions with
initial, upstream and downstream
boundary conditions

• Initial condition

• Upstream boundary condition

• Downstream boundary condition
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Compatibility conditions for existence of strong solutions

Compatibility conditions:

Compatibility conditions with
initial, upstream and downstream
boundary conditions

Piecewise linear (concave) 
in boundary flows 

Linear in boundary flows 



Optimization formulation of the boundary control 
problem

• Let 𝑥 be the vector of boundary flows. The compatibility conditions imply 
that 𝐴𝑥 ≤ 𝑏

• Hence, if the objective function is linear in the boundary flows (e.g. when 
maximizing outflows, or minimizing vehicle accumulation over a link), the 
optimal boundary control problem becomes a LP:

min 𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

• The initial conditions only influence the right 

hand side vector 𝑏. The model parameters (𝜓)

influence both 𝐴 and 𝑏

[Li Canepa Claudel (2014)]
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Stochastic formulation

• In actual control problems initial condition and/or the model 

parameters may be uncertain

• This can dramatically affect the results, since the solution to 

the control problem may lead to worse congestion (when 

applied to a real traffic scenario) than no control at all

• We assume that the initial condition has Gaussian uncertainty 

Solution: use chance constrained-optimization (uncertainty 

appears only in the constraints)



Stochastic model
How to convert the chance constraint:

into a deterministic (linear) expression?

Assume the uncertainty is normally distributed

⟺

If                                 , 

⟺

Where 𝑓1 ⋅ and 𝑓2 ⋅ are linear



Stochastic model



Stochastic model

Chance constraints can be 
equivalently reformulated 
as linear constraints

⟺

Can be extended to other 
probability functions (only 
requires the knowledge of 
the c.d.f.)



Example simulation
• Highway link (I 880, CA) of 3.8 km with 7 segments of constant initial 

density

• Simulation time horizon of 7 minutes (28 time steps)

• Model parameters:

- Critical density: 0.03 /m;

- Free flow speed: 30 m/s;

- Jam density: 0.24 /m

• Means of initial densities are drawn in the range [0.01, 0.07];

• Four scenarios with 𝜎 ∈ {0.01, 0.02, 0.03, 0.04} are tested

• Confidence level 1 − 𝛼 = 0.975



• Objective function: maximize total throughput
Example simulation



• Dual objective: maximize throughput and minimize accumulation

Example simulation
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Network problem formulation
• Robust network boundary control problems can be handled similarly, 

provided that every link is controlled (otherwise robust MILP)



Simulation results
• Optimal boundary flows evaluated on the worst-case initial condition



Simulation results
• Optimal boundary flows 

evaluated on the worst-case 
initial condition
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Conclusion and future work

• Boundary control problems (single link, non robust) can be 
formulated as linear programs. Network problems (non robust) 
are also linear programs (if all links are controlled)

• Initial condition uncertainty can be modeled as chance 
constraints 

• Limitations (future work)

- integrating joint chance constraints if the mode 
(congested/uncongested) of each initial condition block is known

- Combine speed-boundary control and investigate the 
corresponding robust control problem

- Investigate the robust control problem with model uncertainty




