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What’s Driving Power Grid Design?




Renewable Sources Penetration

FIGURE 5. Global Renewable Power Capacity, 2007-2017
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@ ptimal Power Flow under Uncertainty

Japan’s Shift to Renewable Energy Loses Power

s Life

“Most of the growth in renewables has been in solar, but the
industry is suffering.”

“I...] utilities quickly complained about the cost of
protecting the power grid from imbalances in supply and |
demand caused by the Varlablllty of solar power
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0 ptimal Power Flow under Uncertainty

Japan’s Shift to Renewable Energy Loses Power

“Most of the growth in renewables has been in solar, but the
industry is suffering.”

“I...] utilities quickly complained about the cost of
protecting the power grid from imbalances in supply and
demand caused by the variability of solar power”

We need to devise a radically new dispatch philosophy

1. that minimizes generation costs

2. but does not violate generation and transmission constraints
for all admissible values of renewable power and
variable demand
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Optimal Power Flow (OPF)

OPF Goal: Dispatch Generating Units while minimizing
Total Cost

OPF is solved routinely (in a single time period,
e.g.1 hour), to determine

— How much power to generate? Where to generate it?

— Market operation & pricing: functionally combines the power
flow with economic dispatch

— Parameter setting (generator injected power)
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A Smart Grid

Renewable Gen. Generator Load Variable load
s |77 N
>r mAw S _
e
Busi Line (i,k) BUs /

Generator nodes G C N/

Q:{l,...,nG}

Nodes i andj are linked with
a complex admittance y;;
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Conventional Generators

A generator G, connected to the k-th bus provides complex power

‘@‘-
miAut

P +iQy

L+ reactive power (imag)

L, active power (real)

What is reactive power? ' Pover, (VA
Reactive power represents power that ,
oscillates between the sources and the - Faa—

Pover, (W)

reactive components (inductors, capacitors)
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Power Generator Constraints

At any time, the generated power should satisfy given
operational constraints forall k € §

PkminSPkGSPkmaX

Qk min S QkG S Qk max
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Voltage Constraints

The complex voltage at bus k is denoted as V.

At any time, the voltage on the lines should satisfy
magnitude and flow constraints

Vk min <= ‘Vk‘ < Vk max Vk € N

Vi — Vi | < AV V(l,m) e L

m

The second inequality limits the apparent power flow
which can path through the line

The complex voltage is expressed in polar coordinates as
— Magnitude |Vj|
— Phase 0%
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Generator Bus (PV bus)

In a generator bus, the OPF has to determine the active
power of the generator and the bus voltage magnitude

'

These are called control variables
Also angle and

Ok, Q%

need to determined by OPF, they are called
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Load Bus (PQ bus)

Active and reactive power of the load

E’!\EHEH/HJ
PL, Qr
are given (their values are known to the network
operator)
Feasible bus voltages ( )
‘Vk‘7 (976
are to be determined ( )
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Balance Equations

A Balance Equations should be satisfied for all £k € N/

PS¢ — Pl =) Re{Vi(Vk — V))*ui,
lEN

QY —Qr = Im{Vi(Vi — V)" yui}

lENL

where N} is the set of all neighboring nodes of bus k
The solution of these equation is referred to as the
power flow problem

Power flow methods find a mathematically but not
necessarily physically feasible or optimal solution
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Cost function: Let ¢, (PF) be a non-decreasing convex
function representing the cost of generation for
generator k

The total cost 1s given by

min Z ci(PY)

keg
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Economic Dispatch

Used in power exchanges
Supply must meet demand
Takes into account generator limits

miank(PkG)
keg
Pkmin<P]€G§PkmaX

Y P =pt
keg

Economic Dispatch does not consider any network flow
or network constraints!
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Optimal Power Flow

Economic dispatch Power flow
miank(P,f)
keg P¢ =Py =) Re{Vi(Vi — Vi)*uiy
PkminSPk(;;SPkmax LEN
. QF —Qr = Y Tm {Vi(Vie — Vi) *yra}
P =P
Z k lENG
keg

N S

AC Optimal Power Flow
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- G
S Z A Cost
keg
. B
Py - Py = Z Re {Vi(Vie = Vi) yri aIanc-e
N Constraints
k
QF —Qr = Y T {Vi(Vi — Vi) ymi}
leN
B T PkG - Power
Qk min S QkG S Qk max Constraints
Vi min < |Vk| < Vi max Voltage
VI — V| < AVRex Constraints
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Control & State Variable

As already seen, the variables appearing in the OPF
formulation are divided into two classes, depending on
their role in the optimization problem

Control variables are those used by the network operator
to set the operating condition of the network

ui{Pf...ng"Vly...‘Vng‘}

dependent variables that represent
the state of a power network

X:{Q? gga‘vng—kl‘)'")‘Vn‘aelw“aen}
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@ AC-OPF: Control & State Variables

min » e (Py7) f(u) Cost
keg
Balance
P¢ — Pl =Y Re{Vi(Vi — )*uf
: . Z — iy Constraints
LEN (u ) . O
QY —QF = Z 1 9 U, L
leN
B T PkG - Power
Qk min < QkG <Q Constraints
f(u,x) <0
Vi min < |Vk| <V Voltage
VI — V| < AVRex Constraints
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AC-OPF: Control & State Variables

min f(u) s.t.: there exist « such that

g( 7u):O
h(x,u) <0

Given the demand, we optimally design the generators
(injected power & voltage magnitude at PV nodes) so
that (reactive power
and voltage phase, complex voltage at PQ nodes)
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AC-OPF: Comments

The AC-OPF is nonconvex, due to the quadratic balance
equations

Several commercial solvers are available (e.g.
MATPOWER)

No guarantee that we find the global optimum

Solution strategies: relax/approximate the problem
— DC OPF

— Convex relaxations
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") A Convex Relaxation of AC-OPF

Define the vector of complex bus voltages

V=WV,....,V,]*
The OPF quadratic constraints can be reformulated as
linear ones by introducing a new variable

W =VV*
This variable should satisfy the following two constraints

W >0
rank{W} =1

[Low] S.H. Low, IEEE Trans. on Control of Network Systems, 2014
[Madani] R. Madani, S. Sojoudi, J. Lavaei, IEEE Trans. on Power Systems, 2015
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min Z Ck (PkG) Cost
keg
W =0 rank% T =1 Rank
Pkg — Pl,fj = Z Re{(Wkk — Wkl)*y;;l} Balanc-:e
IEN Constraints
QF —Qk = Y T {(Win, — Wia) "y}
lENG
Ay s PkG i Power
o i, s QkG < Q¥ max Constraints
(Vi min)® < Wik < (Vi max)?, Yk € N Voltage
Wit + Wam — Wiy — Wi < (AV;R2%)2 Constraints
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By removing the rank constraint, the ensuing problem

becoms convex and can be efficiently solved by suitable
SDP solvers

The relaxation is exact whenever we find a rank one
solution

It turned to be exact for various IEEE test problems

@ IQTI\ AC-OPF Relaxation






Wind Characterization

Electricity generated by a wind farm depends on the
wind speed vy, and location of installation

PR — ngAr(’UW)S W/

Weibull distribution to describe wind speed variations

Overall mean wind speed = 10.2 knots

S
2
o
2
]
2
©
=
E

Mean hourly wind speed, u knots

Histogram of hourly wind speeds at Plymouth, Mountbatten.
(Years 2005 to 2007 - 25,203 valid data points)

(adapted from Crown copyright data supplied by the Met Office)

@ IQTI\ Resilient Smart Grids




Generator Variability

A renewable energy generator connected to bus k
provides an uncertain complex power

RTINS S

The complex uncertainty

represents the power generation fluctuations which
mainly depend on the environmental conditions
(wind/sun)
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Load Variability

Similarly, loads exhibit high variability
New York Independent System Operator
(NYISO) hourly load for the year 2010, in MW
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The complex load connected to bus k is represented as
. L,0 L,0.
Py( )+Qx( )i=F " +Q i+

L.0 AL.,0 ) )
where Pk , Qk represent expected active and reactive
load and

is the complex fluctuation in the demand at bus k
All the uncertainty is captured in the vector

which lies in
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A resilient design

The difference between real-time and predicted demand
is distributed among all generators

More precisely, a deployment vector is introduced

o = [Ozl,...,Oéng]T, Zkég o = 1, 893 > 0

Real-time active power of generator k is designed as

PG=PF+oar| ) Re{ }—=) Re{ }

JEN kER

O is an additional control variable
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Robust Resilient AC-OPF

Resilient formulation

min  f(u) subject to

for any & € A there exists x = x(4) such that

g(u,x,0) =0
h(u,x,d) >0

How to solve this? Apply [Low]’s relaxation

@ IQTI\ Resilient Smart Grids




@ Towards a Convex Relaxation

Assume w.l.0.g. that the first n, buses are generator
buses and the remaining ones are load buses, we have

W2 ViVE . WVE L V]
Va2 WV ... L RV
W = VV* = '
[Vig 12
Val®
- WU
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NG/ s\ xx7rX YX7TX/ S\

for any 6 € A there exists x = x(4) such that
g(u,x,0) =0

2 convex inu, x for given ¢
T, %, 8) > 0 } Heiore

u={P° W% a} x={Q% W*]

(Vk min>2 S th S (VA max)2 3 \ S N
Wll + Wm'm — Wl'm _ Wm,l < (A‘/Zmax)2, \V/(Z, m) eL

m
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This clearly improves upon robust formulations based on
DC power flow

To deal with the «there exists», previous works introduce
a finite (linear) parameterization of " ( )

( ):A+ZBk :

CR-AC-OPF formulation is less conservative, since no
specific dependence is imposed

[ETH-DC] M. Vrakopoulou et al., IEEE Trans. on Power Systems, 2013
[Bienstock-DC] D. Bienstock et al., SIAM Review, 56(3):461-495, 2014
[Modarresi] M. S. Modarresi et al., IEEE Trans. on Power Systems, 2018
[ETH-AC] M. Vrakopoulou et al., IEEE POWERTECH, 2013
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" Convexified Resilient AC-OPF

CR-AC-OPF can be proven to be exact for several
problem structures

THEOREM (EXACTNESS OF CR-AC-OPF)

Consider a loseless weakly-cyclic network with cycles of

size three, and assume Q. min = —00 for every k € G.
Then, the convex relaxation CR-AC-OPF is exact.

However this is in general an hard semi-infinite
optimization problem

Need computable approximations

[FD-AC] M. Chamambaz, FD, C. Lagoa, IEEE Trans. Control of Network Systems, 2016
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Sample-Based Methods

Based on the availability of a prescribed number of
random uncertainty samples

Solve the «sample based» problem
Provides guarantees on the goodness of the solution
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Sample-Based Solution

min f(u) subject to
for any & € A there exists x = x(4) such that

g(u,x,0) =0
h(u,x,0) >0

} convex inu, x for given ¢

We generate N samples of the uncertainty

For every sample,
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Scenario with Certificates

min f(u) subject to

for any € A there exists x = x(d) such that

g(u,x,0) =0
h(u,x,6) >0

f(u) subject to

g (u,xi, (5“)) = (
h (u, Xi,é(i)) > ()
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Sample Complexity Result

Define the probability of violation of design
Viol(u) =
Pr{ |Px satisfying g(u, =, ) =0,h(u,z, )>0}.

THEOREM (GUARANTEES OF SWC)

If number of samples high enough

then things will most probably go well
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SWC-AC-OPF

minimize ~y
PG WU o,QG 1, QG N Wxl1] . WxIN]

subject to: for I =1,..., N
wll = Wu 4 Wx’[i], Wl -0, a,>0 Vkeg

o = w) u>mwu[ﬂ—mwwM
> (PO + %ZQk +ve Y. ol <
keg keg (l m)eﬁprob

PS¢ + aps"Re{6W} + PE(W) — PE(6D) =

> Re{(Wi - WiDwin}, VkeN
1EN

O+ QEEY) - () =

S m{Wf -wihyn}, vken
lEN,

Py min < PZ + ais"Re{6W} < Py ynax, VK EG

Qk min < QE’M < Qk‘ max; Vk € g

(Vk: min)2 < Wk[:é‘] < (Vk‘ max>2 ; Vk € N

Wil + Wi, = Wi = Wil < AV, ¥(lm) € £

lm
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Handling N-1 Security Constraints

The N-1 security constrained OPF easily fits in this framework

in N-1 SC-OPF framework, only the outages of a single component
are taken into account

7°"" = 10,1, ..., Nout }

In a real network some buses may have a larger probability of
incurring into an outage, i.e. due to geographical location, or
because they employ older technologies

We associate to each element of Z°"* a different “outage
probabilities”
p;™ €[0,1]

obtaining a probabilistic SC-OPF

@ IQTI\ Sampled-based Solutions
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IEEE 39-bus — Comparison with nominal design

We consider a 24 hour demand pattern e —
and solve the OPF for each hour w

The problem has 31 design variables SwC || 0.0014

Setting e = .02 and § — 1 x 107 1°> we Nominal || 0.5374
get V = 5,105
We run SWC-AC-OPF obtaining

u={P“ W" o}

[<2]

a

[=]

o
Average Cost

We then checked the solution with an
a-posteriori Monte Carlo with 10,000
samples: For each sample we solved the
non-linear AC-OPF

Demand Pattern(MVA)

12 14 16
Time(hour)
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IEEE 39-bus — Comparison with [ETH]
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Conclusions

The combination of Convex Relaxations and SwC provides
a new useful tool

The approach is mildly scalable...

New opportunities using new technologies

”Distributed renewable energy systems are emerging as the least expensive and
fastest option for providing energy [...] Enabling technologies can help to

accommodate higher shares of VRE by contributing to more flexible and
integrated system REN21:sa

fth21tCty

[Global status report, 2018] ECEIE0
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Future Directions

New paradigm: Distributed solutions
(local computation + coordination)
— to reduce complexity
— to reduce transmissions and delays
— to improve resilience
— to guarantee privacy

Distributed scenario with certificates optimization

— each node has
* its own design variables and its own
between adjacent nodes
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