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What’s Driving Power Grid Design?

Smart Grid

22

Money

Green

Fear



Renewable Sources Penetration



High Variability (Wind Farms)

Tehachapi Wind Farm,
Southern CA



High Variability (Solar PV)
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Optimal Power Flow under Uncertainty
Japan’s Shift to Renewable Energy Loses Power

“Most of the growth in renewables has been in solar, but the
industry is suffering.”
“[…] utilities quickly complained about the cost of
protecting the power grid from imbalances in supply and
demand caused by the variability of solar power”

Uncertain Smart Grids



Optimal Power Flow under Uncertainty

We need to devise a radically new dispatch philosophy
1. that minimizes generation costs 
2. but does not violate generation and transmission constraints 

for all (most) admissible values of renewable power and 
variable demand 

Japan’s Shift to Renewable Energy Loses Power

“Most of the growth in renewables has been in solar, but the
industry is suffering.”
“[…] utilities quickly complained about the cost of
protecting the power grid from imbalances in supply and
demand caused by the variability of solar power”

Uncertain Smart Grids



The Optimal Power Flow 
Problem

1.



Optimal Power Flow (OPF)
OPF Goal: Dispatch Generating Units while minimizing 
Total Cost
OPF is solved routinely (in a single time period, 
e.g.1 hour), to determine 
– How much power to generate? Where to generate it?
– Market operation & pricing: functionally combines the power 

flow with economic dispatch
– Parameter setting (generator injected power)

OPF Problem



A Smart Grid
Generator Load

Bus kBus i Bus jLine (i,k)

Renewable Gen. Variable load

OPF Problem

Nodes i and j are linked with 
a complex admittance yij

N .
= {1, 2, . . . , n}

L ✓ N ⇥N

G = {N ,L}
Modeled as a graph

Generator nodes G ✓ N



Conventional Generators

OPF Problem

A generator Gk connected to the k-th bus provides complex power

active power (real)
reactive power (imag)

What is reactive power?
Reactive power represents power that 
oscillates between the sources and the 
reactive components (inductors, capacitors)

PG
k + iQG

k



Power Generator Constraints
At any time, the generated power should satisfy given 
operational constraints for all 

OPF Problem

k 2 G

Pk min  PG
k  Pk max

Qk min  QG
k  Qk max



Voltage Constraints
The complex voltage at bus k is denoted as
At any time, the voltage on the lines should satisfy 
magnitude and flow constraints

The second inequality limits the apparent power flow  
which can path through the line
The complex voltage is expressed in polar coordinates as
– Magnitude 
– Phase 

OPF Problem

Vk min  |Vk|  Vk max

|Vl � Vm|  �V max
lm

8k 2 N

8(l,m) 2 L

Vk

✓k
|Vk|



Generator Bus (PV bus) 
In a generator bus, the OPF has to determine the active
power of the generator and the bus voltage magnitude

These are called control variables
Also bus voltage phase angle and generator reactive
power

need to determined by OPF, they are called state variable

OPF Problem

PG
k , |Vk|

✓k, QG
k



Load Bus (PQ bus) 
Active and reactive power of the load

are given (their values are known to the network
operator)

Feasible bus voltages (magnitude and phase angle)

are to be determined (state variables)

OPF Problem

PL
k , QL

k

|Vk|, ✓k



Balance Equations
A Balance Equations should be satisfied for all

The solution of these equation is referred to as the 
power flow problem
Power flow methods find a mathematically but not
necessarily physically feasible or optimal solution

OPF Problem

k 2 N

PG
k � PL

k =
X

l2Nk

Re {Vk(Vk � Vl)
⇤y⇤kl}

QG
k �QL

k =
X

l2Nk

Im {Vk(Vk � Vl)
⇤ykl}

where         is the set of all neighboring nodes of bus kNk



Cost Function
Cost function: Let                 be a non-decreasing convex 
function representing the cost of generation for 
generator k

The total cost is given by

OPF Problem

min
X

k2G
ck(P

G
k )

ck(P
G
k )



Economic Dispatch

X

k2G
PG
k = PL

Used in power exchanges
Supply must meet demand
Takes into account generator limits

OPF Problem

Pk min  PG
k  Pk max

min
X

k2G
ck(P

G
k )

Economic Dispatch does not consider any network flow 
or network constraints! 



Optimal Power Flow
Economic dispatch

OPF Problem

X

k2G
PG
k = PL

Pk min  PG
k  Pk max

min
X

k2G
ck(P

G
k )

Power flow

PG
k � PL

k =
X

l2Nk

Re {Vk(Vk � Vl)
⇤y⇤kl}

QG
k �QL

k =
X

l2Nk

Im {Vk(Vk � Vl)
⇤ykl}

AC Optimal Power Flow



AC-OPF Formulation and 
Relaxations

2.



AC-OPF

Power 
Constraints

Voltage 
Constraints

Balance 
Constraints

Cost

AC-OPF Formulation

Pk min  PG
k  Pk max

Qk min  QG
k  Qk max

PG
k � PL

k =
X

l2Nk

Re {Vk(Vk � Vl)
⇤y⇤kl}

QG
k �QL

k =
X

l2Nk

Im {Vk(Vk � Vl)
⇤ykl}

Vk min  |Vk|  Vk max

|Vl � Vm|  �V max
lm

min
X

k2G
ck(P

G
k )



As already seen, the variables appearing in the OPF 
formulation are divided into  two classes, depending on 
their role in the optimization problem

Control variables are those used by the network operator 
to set the operating condition of the network

State variables are dependent variables that represent 
the state of a power network

Control & State Variable

x
.
= {QG

1 · · · QG
ng
, |Vng+1|, . . . , |Vn|, ✓1, . . . , ✓n}

AC-OPF Formulation

u
.
= {PG

1 · · · PG
ng
, |V1| · · · |Vng |}



AC-OPF: Control & State Variables

Power 
Constraints

Voltage 
Constraints

Balance 
Constraints

Cost

Pk min  PG
k  Pk max

Qk min  QG
k  Qk max

PG
k � PL

k =
X

l2Nk

Re {Vk(Vk � Vl)
⇤y⇤kl}

QG
k �QL

k =
X

l2Nk

Im {Vk(Vk � Vl)
⇤ykl}

Vk min  |Vk|  Vk max

|Vl � Vm|  �V max
lm

min
X

k2G
ck(P

G
k ) f(u)

g(u,x) = 0

f(u,x)  0

AC-OPF Formulation



Given the demand, we optimally design the generators 
(injected power & voltage magnitude at PV nodes) so 
that there exists a network configuration (reactive power 
and voltage phase, complex voltage at PQ nodes) 
satisfying the operational constraints

AC-OPF Formulation

AC-OPF: Control & State Variables

min
u

f(u) s.t.: there exist x such that

g(x,u) = 0

h(x,u)  0



AC-OPF: Comments
The AC-OPF is nonconvex, due to the quadratic balance 
equations
Several commercial solvers are available (e.g. 
MATPOWER)
No guarantee that we find the global optimum
Solution strategies: relax/approximate the problem
– DC OPF
– Convex relaxations

AC-OPF Formulation



A Convex Relaxation of AC-OPF
Define the vector of complex bus  voltages

The OPF quadratic constraints can be reformulated as
linear ones by introducing a new variable

This variable should satisfy the following two constraints

AC-OPF Relaxation

V
.
= [V1, . . . , Vn]T

W ⌫ 0

W = VV⇤

rank{W} = 1

[Low] S.H. Low, IEEE Trans. on Control of Network Systems, 2014
[Madani] R. Madani, S. Sojoudi, J. Lavaei, IEEE Trans. on Power Systems, 2015 



CR-AC-OPF

Power 
Constraints

Voltage 
Constraints

Balance 
Constraints

Rank 

Pk min  PG
k  Pk max

Qk min  QG
k  Qk max

min
X

k2G
ck(P

G
k )

(Vk min)
2  Wkk  (Vk max)

2, 8k 2 N
Wll +Wmm �Wlm �Wml  (�V max

lm )2

PG
k � PL

k =
X

l2Nk

Re {(Wkk �Wkl)
⇤y⇤kl}

QG
k �QL

k =
X

l2Nk

Im {(Wkk �Wkl)
⇤y⇤kl}

W ⌫ 0

Cost

rank{W} = 1

AC-OPF Relaxation



CR-AC-OPF
By removing the rank constraint, the ensuing problem 
becoms convex and can be efficiently solved by suitable 
SDP solvers
The relaxation is exact whenever we find a rank one 
solution 
It turned to be exact for various IEEE test problems

AC-OPF Relaxation



Taming Uncertainty in AC-OPF
Towards resilient smart grids

3.



Wind Characterization
Electricity generated by a wind farm depends on the 
wind speed vW and location of installation 

Weibull distribution to describe wind speed variations

Resilient Smart Grids

PR =
⇢

2
cpAr(vW )3



Generator Variability
A renewable energy generator connected to  bus k
provides an uncertain complex power

The complex uncertainty

represents the power generation fluctuations which
mainly depend on the environmental conditions
(wind/sun)

Resilient Smart Grids

PR
k (�Rk ) +QR

k (�
R
k )i = PR,0

k +QR,0
k i + �Rk

�Rk 2 �R
k ⇢ C



Load Variability
Similarly, loads exhibit high variability
New York Independent System Operator 
(NYISO) hourly load for the year 2010, in MW 

Resilient Smart Grids

was 18,664 MW. The minimum and maximum loads were 
11,859 MW and 33,452 MW, respectively. Fig. 1 shows the 
hourly values of the NYISO load during the course of the year 
2010.
Fig. 1. NYISO hourly load for the year 2010, in MW.  

B. Statistical Background 
The range of values that a random variable may take can be 

described through the use of a probability density function. 
The normal (or Gaussian) distribution is among the most 
common and has often been assumed to describe load 
forecasting errors [2-5]. The truncated normal distribution is 
often used to provide support over a fixed interval. The normal 
distribution can be fully described by the first two statistical 
moments: mean and variance; however, the third and fourth 
moments—skewness and kurtosis, respectively—can be 
utilized to provide additional information about an observed 
distribution. If an observed distribution is well represented by 
the normal distribution, the skewness and excess kurtosis 
values should both be close to zero. Skewness is a measure of 
the asymmetry of a distribution; kurtosis provides a measure of 
the distribution’s peakedness and the weight of the 
distribution’s tails. The normal distribution has a kurtosis 
value of three, and thus the excess kurtosis is the kurtosis value 
minus three. Because we used the normal distribution as a 
point of reference in what follows, when we subsequently refer 
to kurtosis we specifically refer to the excess kurtosis value. A
distribution with a high kurtosis value is known as a 
leptokurtic distribution; a lower kurtosis value is described as 
platykurtic. 

The R statistical computing environment [8] was used in the 
analysis work performed in this study, and the hyperbFit
function of the HyperbolicDist package [9], in particular, was 
used to characterize the distributions and provide estimates of 
the hyperbolic distribution parameter values. The Shapiro-Wilk 
[10] normality test was used to test whether an observed 
distribution comes from a normally distributed population. 

III.  RESULTS

  To understand the impact of load forecasting errors on 
system operations and renewable power integration studies, we 
analyzed and characterized the distribution of load forecast 
errors that occurred during 2010 in the NYISO and CAISO 
balancing areas. Section III-A examines the distribution of 
day-ahead load forecast errors in the CAISO system. A similar 
analysis of the two-day-ahead load forecast errors in CAISO is 
presented in Section III-B. The NYISO day-ahead load 
forecast errors are examined in Section III-C. Section III-D
discusses some of the consequences of erroneously assuming 
that load forecasting errors are normally distributed. 

A. CAISO Day-Ahead Load Forecasts 
Day-ahead load forecasts are important in power system 

operations because, through the unit commitment process, they 
help determine which slow-starting thermal power plants (e.g., 
coal and nuclear plants) will be on during which hours of the 
next day. Load forecast errors can therefore cause a 
suboptimal commitment of thermal generation in the day-
ahead market. System operators are accustom to uncertainty in 
load and therefore have methods of dealing with forecasting 
inaccuracies (e.g., regulation reserve and hour-ahead 
dispatch); however, large load forecast errors can have large 
negative consequences for system operation. One traditional 
method of examining statistical distributions is through the 
plotting of a histogram. A critical parameter in the plotting of a 
histogram is the choice of the number of bins. Because we are 
particularly interested in the tails of the distributions—i.e., the 
large forecast errors—we chose n = 200, a number that is 
greater than the recommendation from Scott’s rule [11]. Fig. 2 
shows the observed day-ahead load forecast errors for the 
CAISO system in 2010. The dotted line shows a normal 
distribution with the same mean and standard deviation as the 
observed errors. The blue line is a hyperbolic distribution fit to 
the observed errors. The observed error distribution is more 
peaked, with narrower shoulders and larger tails than the 
normal distribution assumption would suggest. One of the 
most critical features of the observed distribution is the 
negative mean bias, represented by a mean value of -84.71 
MW. The distribution is also positively skewed and 
leptokurtic. It is also important to note the spread of the 
forecast errors, with both positive and negative errors of 
approximately 4 GW. These are very significant errors on a 
system with a mean load of approximately 26 GW, and would 
require very large corrective actions before the actualization 
time, at high economic cost, to prevent reliability issues. 

438436



Variable Loads
The complex load connected to bus k is represented as

where represent expected active and reactive       
load and                          

is the complex fluctuation in the demand at bus k
All the uncertainty is captured in the vector

which lies in 

Resilient Smart Grids

PL,0
k , QL,0

k

PL
k (�Lk ) +QL

k (�
L
k )i = PL,0

k +QL,0
k i + �Lk

�Lk 2 �L
k ⇢ C

�
.
= [�L1 · · · �Ln �R1 · · · �Rn ]T ,

�
.
= �L

1 ⇥ · · ·⇥�L
n ⇥�R

1 ⇥ · · ·⇥�R
n .



A resilient design
The difference between real-time and predicted demand 
is distributed among all generators
More precisely, a deployment vector is introduced

Real-time active power of generator k is designed as

is an additional control variable

Resilient Smart Grids

↵
.
= [↵1, . . . ,↵ng ]

T ,
P

k2G ↵k = 1, ↵k � 0

↵

P̄G
k = PG

k + ↵k

0

@
X

j2N
Re{�Lj }�

X

k2R
Re{�Rk }

1

A



Robust Resilient AC-OPF
Resilient formulation

How to solve this? Apply [Low]’s relaxation

min
u

f(u)

for any             there exists                 such that

subject to

� 2 �

Resilient Smart Grids



Towards a Convex Relaxation
Assume w.l.o.g.  that the first       buses are generator 
buses and the remaining ones are load buses, we have

Resilient Smart Grids

2

666666664

|V1|2 V1V ⇤
2 . . . V1V ⇤

ng
. . . V1V ⇤

n

|V2|2 V2V ⇤
3 . . . . . . V2V ⇤

n
. . .

|Vng |2
. . .

|Vn|2

3

777777775

.W = VV⇤ =

2

666666664

|V1|2 V1V ⇤
2 . . . V1V ⇤

ng
. . . V1V ⇤

n

|V2|2 V2V ⇤
3 . . . . . . V2V ⇤

n
. . .

|Vng |2
. . .

|Vn|2

3

777777775

.

ng

W = Wu +Wx



Convexified Resilient AC-OPF 

Resilient Smart Grids

minimize
PG,↵,Wu

X

k2G
fk(P

G
k )

subject to: for all � 2 �, there exist QG = QG(�),Wx = Wx(�)

such that

W = Wu +Wx, 1T↵ = 1, W ⌫ 0, ↵k � 0, 8k 2 G
PG
k + ↵ks

TRe{�}+ PR
k (�)� PL

k (�) =
X

l2Nk

Re {(Wkk �Wkl)
⇤y⇤kl} , 8k 2 N

QG
k +QR

k (�)�QL
k (�) =

X

l2Nk

Im {(Wkk �Wkl)
⇤y⇤kl} , 8k 2 N

Pk min  PG
k + ↵ks

TRe{�}  Pk max, 8k 2 G
Qk min  QG

k  Qk max, 8k 2 G
(Vk min)

2  Wkk  (Vk max)
2 , 8k 2 N

Wll +Wmm �Wlm �Wml  (�V max
lm )2, 8(l,m) 2 L

min
u

f(u)

for any             there exists                 such that

subject to

� 2 �

~
~

u = {PG,Wu,↵} x = {QG,Wx}

convex in    ,    for givenu x �



CR-AC-OPF 
This clearly improves upon robust formulations based on 
DC power flow 
To deal with the «there exists», previous works introduce 
a finite (linear) parameterization of

CR-AC-OPF formulation is less conservative, since no 
specific dependence is imposed

Resilient Smart Grids

W(�) = A+
X

k

Bk�k,

W(�)

[ETH-DC] M. Vrakopoulou et al., IEEE Trans. on Power Systems, 2013 
[Bienstock-DC] D. Bienstock et al., SIAM Review, 56(3):461–495, 2014
[Modarresi] M. S. Modarresi et al., IEEE Trans. on Power Systems, 2018
[ETH-AC] M. Vrakopoulou et al., IEEE POWERTECH, 2013 



Convexified Resilient AC-OPF 

CR-AC-OPF can be proven to be exact for several
problem structures

Resilient Smart Grids

Consider a loseless weakly-cyclic network with cycles of 
size three, and assume                           for every            . 
Then, the convex relaxation CR-AC-OPF is exact.

Qk min = �1 k 2 G

THEOREM (EXACTNESS OF CR-AC-OPF)

However this is in general an hard semi-infinite 
optimization problem
Need computable approximations

[FD-AC] M. Chamambaz, FD, C. Lagoa, IEEE Trans. Control of Network Systems, 2016



Sampled-based Solutions
4.



Sample-Based Methods
Based on the availability of a prescribed number of 
random uncertainty samples
Solve the «sample based» problem
Provides guarantees on the goodness of the solution

Sampled-based Solutions



Sample-Based Solution 

We generate N samples of the uncertainty

For every sample, we define a different certificate  

Sampled-based Solutions

min
u

f(u)

for any             there exists                 such that

subject to

� 2 �

�(1), . . . , �(N)

x1, . . . ,xN

convex in    ,    for givenu x �



Scenario with Certificates

Sampled-based Solutions

subject to SWC

min
u

f(u)

for any             there exists                 such that

subject to

� 2 �



Sample Complexity Result
Define the probability of violation of design

Sampled-based Solutions

Viol(u) =

Pr {�|@x satisfying g(u,x, �) = 0, h(u,x, �) � 0} .

If the number of samples is such that

Then, with high probability (at least            )

THEOREM (GUARANTEES OF SWC)

1� �

Viol(u) < ✏

If number of samples high enough

then things will most probably go well



SWC-AC-OPF

Sampled-based Solutions

minimize
PG,Wu,↵,QG,[1],...,QG,[N],Wx,[1],...,Wx,[N]

�

subject to: for I = 1, . . . , N

W[I] = Wu +Wx,[i], W[i] ⌫ 0, ↵k � 0. 8k 2 G

L[I]
lm = |(W [I]

ll �W [I]
lm)⇤y⇤lm|+ |(W [I]

mm �W [I]
ml)

⇤y⇤lm|
X

k2G
fk(P

G
k ) + �b

X

k2G
QG,[I]

k +�`
X

(l,m)2Lprob

L[I]
lm  �

PG
k + ↵ks

TRe{�(i)}+ PR
k (�(i))� PL

k (�(i)) =
X

l2Nk

Re
n
(W [I]

kk �W [i]
kl )

⇤y⇤kl

o
, 8k 2 N

QG,[i]
k +QR

k (�
(i))�QL

k (�
(i)) =

X

l2Nk

Im
n
(W [I]

kk �W [i]
kl )

⇤y⇤kl

o
, 8k 2 N

Pk min  PG
k + ↵ks

TRe{�(i)}  Pk max, 8k 2 G

Qk min  QG,[i]
k  Qk max, 8k 2 G

(Vk min)
2  W [I]

kk  (Vk max)
2 , 8k 2 N

W [I]
ll +W [I]

mm �W [I]
lm �W [I]

ml  (�V max
lm )2, 8(l,m) 2 L



Handling N-1 Security Constraints

The N-1 security constrained OPF easily fits in this framework
in N−1 SC-OPF framework, only the outages of a single component 
are taken into account

In a real network some buses may have a larger probability of 
incurring into an outage, i.e. due to geographical location, or 
because they employ older technologies
We associate to each element of           a different “outage 
probabilities”

obtaining a probabilistic SC-OPF

Sampled-based Solutions

Iout = {0, 1, . . . , Nout}

Iout

pouti 2 [0, 1]



Numerical Results
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IEEE 39-bus

• 21 loads  
with a total 
demand of 
6254 MW

• 46 trans-
mission lines

• 11 tap 
changing 
transformers

• Penetration 
level 30%

• 10 order IV 
synchronous 
generators 
with max 
capacitance 
of 8404 MW

• TG and AVR 
control 
devices

• Individual 
cost 
parameters 
for every 
generator

Numerical Results



IEEE 39-bus – Comparison with nominal design

We consider a 24 hour demand pattern 
and solve the OPF for each hour
The problem has 31 design variables
Setting and                               we
get
We run SWC-AC-OPF obtaining

We then checked the solution with an 
a-posteriori Monte Carlo with 10,000 
samples: For each sample we solved the 
non-linear AC-OPF

✏ = .02 � = 1⇥ 10�15

N = 5, 105

u = {PG,Wu,↵}
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Numerical Results



Results: Robust OPF

High violation

Very low 
violation

IEEE 39-bus – Comparison with nominal design



IEEE 39-bus – Comparison with [ETH]

Numerical Results
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[32] Approach

[ETH] SWC
Design Variables 896 31
N (samples) 11,838 839
Time (min) 49 3,074
Generation cost ($) 25, 359 25,280



Conclusions and Future 
Directions
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Conclusions
The combination of Convex Relaxations and SwC provides 
a new useful tool 
The approach is mildly scalable…
New opportunities using new technologies

Conclusions

”Distributed renewable energy systems are emerging as the least expensive and 
fastest option for providing energy [...] Enabling technologies can help to 
accommodate higher shares of VRE by contributing to more flexible and 
integrated system

[Global status report, 2018] 



Future Directions
New paradigm: Distributed solutions

(local computation + coordination) 
– to reduce complexity
– to reduce transmissions and delays
– to improve resilience
– to guarantee privacy 

Distributed scenario with certificates optimization
– each node has

• its own design variables and its own uncertainty
– certificates need to be shared between adjacent nodes

Conclusions
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