Formulas for Data-Driven Control Stability, Optimality and Robustness

Claudio De Persis

Institute of Engineering and Technology J.C. Willems Center for Systems and Control

Workshop – Resilient Control of Infrastructure Networks Department of Mathematical Sciences, Politecnico di Torino, 24-27 September 2019

Joint work with Pietro Tesi (Università di Firenze)

What is this talk about?

...and how it is related to the topic of the workshop **Resilient Control of Infrastructure Networks**?

- Infrastructure networks may have models too difficult to derive from first principles or too complex to work with for design purposes
- Complex networks generate large amount of data

Can we trade off the knowledge of the system's dynamics against experimental data and be able to control the system?

This talk introduces a new approach that enables this transition

Outline

- Closed-loop data-based representations of systems
- Stabilization
- Linear quadratic regulation
- Robustness to noise and disturbances

What is control?

If physics is the science of understanding the physical environment, then control theory may be viewed as the science of modifying that environment [...] Control theory does not deal directly with physical reality but with mathematical models.

Rudolf Kalman, Control Theory, Encyclopædia Britannica

Mathematical models

$$\begin{array}{lll} x(k+1) = & f(x(k), u(k)) & x(k+1) = & Ax(k) + Bu(k) \\ y(k) = & h(x(k), u(k)) & y(k) = & Cx(k) + Du(k) & k = 0, 1, 2, \dots \end{array}$$

Control when the dynamics is unknown

When (A, B) are <u>unknown</u>, one can follow 2 distinct approaches

- System identification from data + control of the identified system
 - A. Chiuso and G. Pillonetto. "System identification: A machine learning perspective". Annual Review of Control, Robotics, and Autonomous Systems, 2:281-304, 2019.
 - B. Recht. "A tour of reinforcement learning: The view from continuous control". Annual Review
 of Control, Robotics, and Autonomous Systems, 2:253-279, 2019.

• Direct data-based control design (no identification)

- M.C. Campi, A. Lecchini, and S.M. Savaresi. "Virtual reference feedback tuning: a direct method for the design of feedback controllers". Automatica, 38(8):1337-1346, 2002.
- C. Novara, L. Fagiano, and M. Milanese. "Direct feedback control design for nonlinear systems". Automatica, 49(4):849-860, 2013.

Persistence of excitation

In the sequel we propose a new approach, which seeks a data-based representation of the unknown closed-loop dynamics enabled by **persistently exciting** input probing signals

Definition The sequence of input values $u : [0, T - 1] \rightarrow \mathbb{R}^m$

 $u(0), u(1), \ldots, u(T-1)$

is persistently exciting (PE) of order L if the Hankel matrix associated to it $[T_{L}(z)] = (T_{L}(z) + T_{L}(z) + T_{L$

$$U_{0,L,T-L+1} = \begin{bmatrix} u(0) & u(1) & \dots & u(T-L) \\ u(1) & u(2) & \dots & u(T-L+1) \\ \vdots & \vdots & \ddots & \vdots \\ u(L-1) & u(L) & \dots & u(T-1) \end{bmatrix}$$

has full rank *mL*.

PE requires sufficiently long probing input sequences: $T \ge (m+1)L - 1$

How to generate PE signals

end

$$L = 3, n = 2, m = 1 \Rightarrow T = 5$$
$$u_{[0,T-1]} = [-0.355\ 0.353\ 0.1221\ -0.149\ 0.0132]$$
$$U_{0,L,T-L+1} = \begin{bmatrix} -0.3550\ 0.3530\ 0.1221\ -0.1490\\ 0.1221\ -0.1490\ 0.0132 \end{bmatrix}$$

M. Verhaegen and V. Verdult. Filtering and system identification: a least squares approach. Cambridge University Press, 2007.

The Fundamental Lemma

A PE input applied to a controllable system produces data that are sufficiently independent over time

Lemma Let system

$$\kappa(k+1) = A\kappa(k) + Bu(k)$$

be <u>controllable</u>. Then for any $t \ge 1$

$$u_{[0, T-1]}$$
 PE of order $n + t \implies \operatorname{rank} \begin{bmatrix} U_{0, t, T-t+1} \\ X_{0, T-t+1} \end{bmatrix} = n + tm$

$$U_{0,t,T-t+1} = \begin{bmatrix} u(0) & u(1) & \dots & u(T-t) \\ u(1) & u(2) & \dots & u(T-t+1) \\ u(2) & u(3) & \dots & u(T-t+2) \\ \vdots \\ u(t-1) & u(t) & \dots & u(T-1) \end{bmatrix}$$

$$X_{0,T-t+1} = \begin{bmatrix} x(0) & x(1) & \dots & x(T-t) \end{bmatrix}$$

J.C. Willems, P. Rapisarda, I. Markovsky, B.L. De Moor. "A note on persistency of excitation." Systems & Control Letters, 54, 4, 325–329, 2005.

Example

Unknown system – linearized predator-prey model (n = 2, m = 1, t = 1)

The matrix

$$\frac{\begin{bmatrix} U_{0,t,T-t+1} \\ X_{0,T-t+1} \end{bmatrix}}{\begin{bmatrix} X_{0,5} \end{bmatrix}} = \frac{\begin{bmatrix} -0.3550 & 0.3530 & 0.1221 & -0.1490 & 0.0132 \\ 0.4027 & 0.3478 & 0.3571 & 0.3216 & 0.2362 \\ 0.4448 & 1.1451 & 1.7499 & 2.3708 & 2.9301 \end{bmatrix}}$$

has rank n + tm = 3

Deep implications for control

Lemma (i) If $u_{d,[0,T-1]}$ is persistently exciting of order n + t, then any *t*-long input/output trajectory of the system can be expressed as

$$\begin{bmatrix} u_{[0,t-1]} \\ y_{[0,t-1]} \end{bmatrix} = \begin{bmatrix} U_{0,t,\tau-t+1} \\ Y_{0,t,\tau-t+1} \end{bmatrix} g$$

where $g \in \mathbb{R}^{T-t+1}$. (ii) Any linear combination of the columns of the matrix of data, i.e.,

$$\frac{\left[U_{0,t,T-t+1}\right]}{\left[Y_{0,t,T-t+1}\right]}g,$$

is a *t*-long input-output trajectory of the system.

I. Markovsky and P. Rapisarda. "Data-driven simulation and control". International Journal of Control, 81(12), 1946–1959, 2008.

DeePC - Data enabled Predictive Control

$$\max_{g(k),w(k)} \sum_{\ell=0}^{t-1} \left(\|y(k+\ell)\|_Q^2 + \|u(k+\ell)\|_R^2 \right) + \|w(k)\|^2$$

s.t.
$$\begin{bmatrix} u_{[k,k+t-1]} \\ y_{[k,k+t-1]} \end{bmatrix} = \begin{bmatrix} U_{0,t,T-t+1} \\ Y_{0,t,T-t+1} \end{bmatrix} g(k) + w(k)$$

<u>De</u> <u>P</u>intelier <u>C</u>afé September 2018

J. Coulson, J. Lygeros, F. Dörfler. "Data-Enabled Predictive Control: In the Shallows of the DeePC." European Control Conference, 2019.

Direct data-based control design: stability

Closed-loop data-based representation

Now we introduce a <u>closed-loop data-based representation</u> that enables the design of controllers <u>without</u> the intermediate step of estimating the model.

Why should we care about this different solution?

Because

- Sometimes system identification is difficult:
 - complex dynamics
 - noisy data (without statistics)
 - finite number of samples
- We skip one step (save computation)
- It is intellectually stimulating
- It is a systematic approach
- It leads to clean analytic formulas

Closed-loop data-based representation

Arrange the closed loop system as

$$A + BK = \begin{bmatrix} B & A \end{bmatrix} \begin{bmatrix} K \\ I \end{bmatrix}$$

By the Fundamental Lemma and Rouché-Capelli Theorem

$$\begin{bmatrix} K \\ I \end{bmatrix} = \begin{bmatrix} U_{0,1,T} \\ X_{0,T} \end{bmatrix} G_K, \text{ for some } T \times n \text{ matrix } G_K$$

Hence

$$A + BK = \begin{bmatrix} B & A \end{bmatrix} \begin{bmatrix} U_{0,1,T} \\ X_{0,T} \end{bmatrix} G_K = X_{1,T} G_K$$

having set

$$\begin{array}{rcl} AX_{0,T} + BU_{0,1,T} = & A \begin{bmatrix} x(0) & x(1) & \dots & x(T-1) \end{bmatrix} + B \begin{bmatrix} u(0) & u(1) & \dots & u(T-1) \end{bmatrix} \\ & = & \begin{bmatrix} x(1) & x(2) & \dots & x(T) \end{bmatrix} \\ & = : & X_{1,T} \end{array}$$

Data-based parametrization of the closed-loop

Theorem System

$$x(k+1) = Ax(k) + Bu(k)$$

in closed-loop with a state feedback u = Kx has the following equivalent representation

$$x(k+1) = X_{1,T}G_{K}x(k)$$

where G_K is a $T \times n$ matrix satisfying

$$\begin{bmatrix} \mathsf{K} \\ \mathsf{I}_n \end{bmatrix} = \begin{bmatrix} \mathsf{U}_{0,1,\mathsf{T}} \\ \mathsf{X}_{0,\mathsf{T}} \end{bmatrix} \mathsf{G}_{\mathsf{K}}$$

Shift design from K to G_K – then $K = U_{0,1,T}G_K$

C. De Persis, P. Tesi. "Formulas for data-driven control: stability, optimality, robustness". arXiv:1903.06842 , 15 March 2019.

Direct data-based stabilization

Problem Find G_K such that the closed-loop system

$$x(k+1) = X_{1,T}G_{K}x(k)$$

is asymptotically stable

A necessary and sufficient condition is given by the Lyapunov inequality

$$\begin{array}{ccc} P \succ & 0 \\ X_{1,T} G_{K} \cdot P \cdot G_{K}^{\top} X_{1,T}^{\top} - P \prec & 0 \end{array}$$

with

$$\begin{bmatrix} K \\ I_n \end{bmatrix} = \begin{bmatrix} U_{0,1,T} \\ X_{0,T} \end{bmatrix} G_K$$

Direct data-based stabilization

• The variable transformation

$$Y = G_K P$$

and Schur's complement reduces it to the data-based LMI

$$\begin{bmatrix} X_{0,T}Y & Y^{\top}X_{1,T}^{\top} \\ X_{1,T}Y & X_{0,T}Y \end{bmatrix} \succ 0$$

with

$$\begin{bmatrix} K \\ P \end{bmatrix} = \begin{bmatrix} U_{0,1,T} G_K \\ X_{0,T} Y \end{bmatrix}$$

• The solution to the LMI returns Y. The control gain is obtained via

$$\begin{array}{lll} \mathcal{K} = & U_{0,1,T} \mathcal{G}_{\mathcal{K}} \\ \mathcal{Y} = & \mathcal{G}_{\mathcal{K}} \mathcal{P} \\ \mathcal{P} = & X_{0,T} \mathcal{Y} \end{array} \Rightarrow \quad \mathcal{K} = U_{0,1,T} \mathcal{Y}(X_{0,T} \mathcal{Y})^{-1}$$

Direct data-based stabilization

Theorem Any matrix Y satisfying

$$\begin{bmatrix} X_{0,T} Y & X_{1,T} Y \\ Y^{\top} X_{1,T}^{\top} & X_{0,T} Y \end{bmatrix} \succ 0$$

is such that

$$K = U_{0,1,T} Y (X_{0,T} Y)^{-1}$$

is a stabilizing state-feedback gain for system

$$x(k+1) = Ax(k) + Bu(k)$$

<u>Converse result</u> if K is a stabilizing state-feedback gain for the system, then it can be written as $K = U_{0,1,T}Y(X_{0,T}Y)^{-1}$

C. De Persis, P. Tesi. "Formulas for data-driven control: stability, optimality, robustness". arXiv:1903.06842, 15 March 2019.

Example

Data-based stabilization of the linearized predator-prey model

State response to PE input from experiment

$$X_{0,5} = \begin{bmatrix} 0.4027 & 0.3478 & 0.3571 & 0.3216 & 0.2362 \\ 0.4448 & 1.1451 & 1.7499 & 2.3708 & 2.9301 \end{bmatrix}$$

$$X_{1,5} = \begin{bmatrix} 0.3478 & 0.3571 & 0.3216 & 0.2362 & 0.1541 \\ 1.1451 & 1.7499 & 2.3708 & 2.9301 & 3.3409 \end{bmatrix}$$

Solve for Y

```
cvx_begin sdp
variable Y(T,n)
[XOT*Y X1T*Y; Y'*X1T' XOT*Y]>=eye(2*n);
cvx_end
```

which returns

$$Y = \begin{bmatrix} 27.4724 & -20.8515 \\ -25.5235 & -8.8555 \\ -1.6399 & -2.0356 \\ 5.3938 & 3.6399 \\ 0.1696 & 18.8019 \end{bmatrix}$$

 ${\tt S. Boyd. "Solving semidefinite programs using {\tt cvx," http://stanford.edu/class/ee363/notes/lmi-cvx.pdf}}$

Example

Feedback gain

 $K = U_{0,1,5}Y(X_{0,5}Y)^{-1} = \begin{bmatrix} -8.2995 & -1.2512 \end{bmatrix}$

Spectral radius data-based controlled system $\rho(A + BK) = 0.5666$

Discussion I

- Simple solution: data-dependent Lyapunov stability theory
- The data-based problem is solvable via efficient numerical algorithms (cvx)
- It only requires a <u>finite number</u> of data collected in <u>one-shot</u> low sample-complexity experiments (T ≥ (m + 1)(n + 1) - 1)
- A dynamic output feedback control can be designed from data obtained with a PE input of order (2n + 1)
- There is no attempt to estimate A, B from data. Data are only used to represent the gain K.

Discussion II

 Variations of the arguments used to prove the main result show that the result holds even using data <u>not obtained from PE</u> data. Recall our main result

$$\begin{bmatrix} X_{0,T} Y & X_{1,T} Y \\ Y^{\top} X_{1,T}^{\top} & X_{0,T} Y \end{bmatrix} \succ 0 \quad K = U_{0,1,T} Y (X_{0,T} Y)^{-1} \quad P = X_{0,T} Y$$

By Schur's complement, the LMI is rewritten as

$$X_{1,T}Y(X_{0,T}Y)^{-1} \cdot P \cdot (X_{0,T}Y)^{-1}(X_{1,T}Y)^{\top} - P \succ 0$$

which shows that

$$X_{1,T}Y(X_{0,T}Y)^{-1}$$

is stable. Then

$$X_{1,T}Y(X_{0,T}Y)^{-1} = \begin{bmatrix} B & A \end{bmatrix} \begin{bmatrix} U_{0,1,T} \\ X_{0,T} \end{bmatrix} Y(X_{0,T}Y)^{-1}$$
$$= \begin{bmatrix} B & A \end{bmatrix} \begin{bmatrix} K \\ I_n \end{bmatrix}$$
$$= A + BK$$

shows that $K = U_{0,1,T}Y(X_{0,T}Y)^{-1}$ is stabilizing

H. van Waarde, J. Eising, H. Trentelman, K. Camlibel. "Data informativity: a new perspective on data-driven analysis and control". arXiv:1908.00468, 1 August 2019.

Optimality

Optimality - Linear Quadratic Regulation

LQR problem Design $u(0), u(1), u(2), \ldots$ that minimizes

$$J_{\infty}(x_0, u) := \sum_{k=0}^{\infty} (x(k)Qx(k) + u(k)^{\top}Ru(k)), \quad Q \succeq 0, R \succ 0$$

for the system x(k + 1) = Ax(k) + Bu(k), $x(0) = x_0$

The solution is given by

$$u_{\star} := K_{\star}x, \quad K_{\star} := -(R + B^{\top}PB)^{-1}B^{\top}PA$$

with P the stabilizing solution of the DARE

$$A^{\top}PA - P - A^{\top}PB(R + B^{\top}PB)^{-1}B^{\top}PA + Q = 0$$

Data-based solution to LQR

A reformulation of LQR as an optimization problem

 $\begin{aligned} \min_{K,P,X} & \operatorname{trace} \left(QP \right) + \operatorname{trace} \left(X \right) \\ \text{subject to} \\ \begin{cases} (A + BK)P(A + BK)^{\top} - P + I_n \preceq 0 \\ P \succeq I_n \\ X - R^{1/2}KPK^{\top}R^{1/2} \succeq 0 \end{cases} \end{aligned}$

E. Feron, V. Balakrishnan, S. Boyd, L. El Ghaoui, "Numerical methods for H_2 related problems," in 1992 American Control Conference, pp. 2921–2922.

Data-based solution to LQR

A similar transformation as before leads to the semidefinite program

$$\begin{aligned} \min_{Y,X} & \operatorname{trace}\left(QX_{0,T}Y\right) + \operatorname{trace}\left(X\right) \\ \text{subject to} \end{aligned}$$

$$\begin{cases} \begin{bmatrix} X & R^{1/2} U_{0,1,T} Y \\ Y^{\top} U_{0,1,T}^{\top} R^{1/2} & X_0 Y \end{bmatrix} \succeq 0 \\ \begin{bmatrix} X_{0,T} Y - I_n & X_{1,T} Y \\ Y^{\top} X_{1,T}^{\top} & X_{0,T} Y \end{bmatrix} \succeq 0 \end{cases}$$

The resulting optimal gain matrix is given by

$$K_{\star} = U_{0,1,T} Y (X_{0,T} Y)^{-1}$$

which coincides with the DARE-based solution

$$K_{\star} = -(R + B^{ op} PB)^{-1} B^{ op} PA$$

C. De Persis, P. Tesi. "Formulas for data-driven control: stability, optimality, robustness". arXiv:1903.06842, 15 March 2019.

Discussion

• The data-based problem is solvable via efficient numerical algorithms (<u>cvx</u>)

```
cvx_begin sdp
variable Q(T,n)
variable X(m,m) symmetric
minimize ( trace(Q*X0*Y) +trace(X) )
[X, sqrtm(R)*U0*Y; Y'*U0'*sqrtm(R)', X0*Y] >= 0
[X0*Y-eye(n), X1*Y; Y'*X1', X0*Y] >= 0
cvx_end
```

K = U0*Y*(inv(X0*Y));

- It only requires data collected in <u>one-shot</u> low sample-complexity experiments
- Solution is exactly computed via a single SDP and not approximated via sequential iterations as in, e.g., Q-learning applied to LQR

Q-learning and LQR

Algorithm 1 The Q-learning algorithm applied to the LQR problem

- 1: Guess initial stabilizing gain K_0
- 2: Set initial time k = 0
- 3: for i = 0 to ∞ do
- 4: **for** j = 1 to *N* **do**

5: Apply
$$u(k) = K_i x(k) + e(k)$$
, $e(k)$ PE "exploration signal"

- 6: Estimate $K_i(j)$ using RLS and I/O measurements
- $7: \qquad k = k + 1$
- 8: end for

9: Set
$$K_{i+1} = K_i(N)$$

10: end for

There exists an estimation interval N such that the algorithm generates a sequence $\{K_i : i = 0, 1, 2, ...\}$ such that $\lim_{i \to \infty} ||K_i - K_*|| = 0$

S.J. Bradtke, B.E. Ydstie and A.G. Barto. Adaptive linear quadratic control using policy iteration. Proceedings of the 1994 American Control Conference, 3475–3479, 1994.
J.C.H. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Robustness

Noisy measurements

$$\begin{array}{ll} x(k+1) = & Ax(k) + Bu(k) \\ \zeta(k) = & x(k) + w(k) & k = 0, 1, 2, \dots \end{array}$$

where w is an unknown measurement noise

Experiment

- Consider a PE input $u_{[0,T-1]}$ of order n + t with t = 1
- Apply it to the system and collect the **measured** (hence, **noisy**) state response in the $n \times T$ matrix

$$Z_{0,T} = X_{0,T} + W_{0,T}$$

where

$$X_{0,T} = \begin{bmatrix} x(0) & x(1) & \dots & x(T-1) \end{bmatrix}$$
$$W_{0,T} = \begin{bmatrix} w(0) & w(1) & \dots & w(T-1) \end{bmatrix}$$

Data-based representation with noisy measurements

As before, by the Fundamental Lemma

$$\begin{bmatrix} K \\ I \end{bmatrix} = \begin{bmatrix} U_{0,1,T} \\ Z_{0,T} \end{bmatrix} G_K, \text{ for some } G_K$$

Hence

$$A + BK = \begin{bmatrix} B & A \end{bmatrix} \begin{bmatrix} U_{0,1,T} \\ Z_{0,T} \end{bmatrix} G_{K} = (\underbrace{Z_{1,T}}_{known} + \underbrace{R_{0,T}}_{uncertainty}) G_{K}$$

having set

Robust stabilization with noisy measurements

Theorem Let

$$R_{0,T}R_{0,T}^{\top} \preceq \gamma Z_{1,T}Z_{1,T}^{\top}$$

"noise-tosignal ratio"

for some $\gamma > 0$.

Any matrix Y and scalar lpha > 0 satisfying $\gamma < lpha^2/(4+2lpha)$ and

$$\begin{bmatrix} Z_{0,T} Y - \alpha Z_{1,T} Z_{1,T}^{\top} & Z_{1,T} Y \\ Y^{\top} Z_{1,T}^{\top} & Z_{0,T} Y \end{bmatrix} \succeq 0 \quad \begin{bmatrix} I_{T} & Y \\ Y^{\top} & Z_{0,T} Y \end{bmatrix} \succeq 0$$

is such that

$$K = U_{0,1,T} Y (X_{0,T} Y)^{-1}$$

is a stabilizing state-feedback gain for system x(k+1) = Ax(k) + Bu(k).

- In practice, search for the feasible solution maximizing α
- Same results applicable to process disturbances

$$x(k+1) = Ax(k) + Bu(k) + d(k)$$

where d(k) can model, e.g., neglected nonlinearities \Rightarrow stabilization in the first approximation of nonlinear systems

C. De Persis, P. Tesi. "Formulas for data-driven control: stability, optimality, robustness". arXiv:1903.06842, 15 March 2019.

Data-based representation and robust control

An LFT representation

Linear fractional representation

Concrete full-block S-procedure [Scherer-Weiland – Th. 6.8] If there exists a symmetric multiplier M such that M

$$\begin{bmatrix} R_{0,T} \\ I \end{bmatrix}^{\top} \overbrace{\begin{bmatrix} Q & S \\ S^{\top} & R \end{bmatrix}}^{\top} \begin{bmatrix} R_{0,T} \\ I \end{bmatrix} \succeq 0$$

and

$$\begin{bmatrix} \star & \star & \star & \star \\ \star & \star & \star & \star \end{bmatrix} \begin{bmatrix} 0 & P & 0 & 0 \\ P & 0 & 0 & 0 \\ 0 & 0 & Q & S \\ 0 & 0 & S^{\top} & Q \end{bmatrix} \begin{bmatrix} I & 0 \\ Z_{1,T}G_{K} & I \\ 0 & I \\ G_{K} & 0 \end{bmatrix} \prec 0$$

then a robust stabilizer can be designed.

J. Berberich, A. Romer, C.W. Scherer, F. Allgöwer. "Robust data-driven state-feedback design". arXiv:1909.04314, 10 Sep 2019.

Conclusions

A systematic method for the direct design of data-driven control policies for linear systems

- Stabilization, LQR, output feedback, MIMO systems
- One-shot experiment of duration n + 1 (or 2n + 1 output feedback)
- Robustness to noise
- Stabilization in first approximation of nonlinear systems

Formulas for Data-driven Control: Stabilization, Optimality and Robustness

C. De Persis and P. Tesi

Abstract—In a paper by Willems and coauthors it was shown that persistently exciting data can be used to represent the inputoutput behavior of a linear system. Based on this fundamental result, we derive a parametrization of linear feedback systems that naves the way to solve immortant control problems using control theory [6], iterative feedback tuning [7], and virtual reference feedback tuning [8]. This topic is now attracting more and more researchers, with problems ranging from PIDlike control [9] to model reference control and output tracking

arXiv:1802.08457 - 15 March 2019

Outlook

- LMIs and SDPs are ubiquitous in control this approach can be used to deal with problems using data to replace models. Start from, e.g., Scherer-Weiland's textbook (LFT, IQC, LPV) and expand.
- Complex dynamics Nonlinear dynamics uplifted to higher dimension systems using observable functions give a more accurate representation (Claude-Fliess-Isidori's immersion, Carleman linearization, polyflow approximation, Koopman operator...). Thus using more data enables non-regional data-based control of nonlinear systems.
- Fundamental lemma for nonlinear systems Input-output relation based on truncated Fliess's fundamental formula (nonlinear realization theory - Isidori, Chapter 3). This I/O relation can be organized in the form of a Hankel matrix whose entries depend on experimental data. Major difference: Lie rank vs. Hankel rank.
- Large-scale systems Experiments in open-loop for unstable large-scale systems is unfeasible. Either experiments in closed-loop + dither or design local experiments for global results.

Thank you!