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What is this talk about?

...and how it is related to the topic of the workshop Resilient
Control of Infrastructure Networks?

e Infrastructure networks may have models too difficult to
derive from first principles or too complex to work with for
design purposes

e Complex networks generate large amount of data

Can we trade off the knowledge of the system's dynamics against
experimental data and be able to control the system?

This talk introduces a new approach that enables this transition
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Outline

Closed-loop data-based representations of systems
Stabilization

Linear quadratic regulation

Robustness to noise and disturbances
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What is control?

If physics is the science of understanding the physical environment, then
control theory may be viewed as the science of modifying that environment
[...] Control theory does not deal directly with physical reality but with
mathematical models.

Rudolf Kalman, Control Theory, Encyclopzdia Britannica
Mathematical models

x(k+1) = f(x(k),u(k)) x(k+1) = Ax(k)+ Bu(k)
y(k) = h(x(k), u(k)) y(k) = Cx(k)+ Du(k) k=0,1,2,...
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Control when the dynamics is unknown

When (A, B) are unknown, one can follow 2 distinct approaches

e System identification from data + control of the identified
system

e A. Chiuso and G. Pillonetto. “System identification: A machine learning perspective”. Annual
Review of Control, Robotics, and Autonomous Systems, 2:281-304, 2019.
e B. Recht. “A tour of reinforcement learning: The view from continuous control”. Annual Review

of Control, Robotics, and Autonomous Systems, 2:253-279, 2019.
e Direct data-based control design (no identification)

e M.C. Campi, A. Lecchini, and S.M. Savaresi. “Virtual reference feedback tuning: a direct method
for the design of feedback controllers”. Automatica, 38(8):1337-1346, 2002.
e C. Novara, L. Fagiano, and M. Milanese. “Direct feedback control design for nonlinear systems”.

Automatica, 49(4):849-860, 2013.
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Persistence of excitation
In the sequel we propose a new approach, which seeks a data-based

representation of the unknown closed-loop dynamics enabled by persistently
exciting input probing signals

Definition The sequence of input values u: [0, T — 1] — R™
u(0),u(1),...,u(T —1)

is persistently exciting (PE) of order L if the Hankel matrix associated to

"’ u(0) u(l) ... u(T —L)
u(1) u2) ... u(T—-L+1)
Uo o, 7—141 = : : :
u(Ll=1) u(l) ... u(T-1)

has full rank mL.

PE requires sufficiently long probing input sequences: T > (m+ 1)L —1
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How to generate PE signals

aux=zeros(m,T) ;
aux(:)=0.5; )
ud(1:m,1:T)=rand(m,T)-aux; " ]

Sig
—

% Computing the Hankel matrix

for j=1:T-L+1 |
for i=1:L : P ek
Ud((i-1)*m+1: (i-1)*m+m, j)=ud(1l:m, j+i-1);
end

end
L=3n=2m=1=T=5
Up,7-1 = [-0.355 0.353 0.1221 — 0.149 0.0132]

—0.3550 0.3530  0.1221
Uo7-141= | 03530  0.1221  —0.1490
01221 —0.1490 0.0132

M. Verhaegen and V. Verdult. Filtering and system identification: a least squares approach. Cambridge University
Press, 2007. 6/32



The Fundamental Lemma

A PE input applied to a controllable system produces data that are sufficiently
independent over time

Lemma Let system
x(k + 1) = Ax(k) + Bu(k)
be controllable. Then for any t > 1

up,7—1) PE of order n+t = rank [Uo’t’T_H'l} =n-+tm
0, T—t+1
u(0) u(l) ... u(T —t)
u(1) u2) ... u(T—-t+1)
u(2) uB) ... u(T—-t+2)
Uo,t,T—t+1 = ]
w(t—1)  u(®) ...  u(T—1)
Xo,7—t+1= [ x(0) x(1) ... x(T-1t)]

J.C. Willems, P. Rapisarda, |. Markovsky, B.L. De Moor. “A note on persistency of excitation.” Systems & Control
Letters, 54, 4, 325-329, 2005.
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Example

Unknown system — linearized predator-prey model (n=2, m=1, ¢t

1)
ad d
R
x(k+1)= \‘bﬂ J x(k) + \‘ J u(k), y(k) = x(k)
1
3 0
ud(O),...,ud(T* 1) UNKNOWN ¥a(0), ..., ya(T — 1)
SYSTEM
0.4027 0.3478  0.3571 0.3216  0.2362
[-0.3550 0.3530 0.1221  —0.1490  0.0132] [0‘4448 T 13m0 23908 29301]

The matrix

w 1 [Usss] [-0.3550 0.3530 0.1221 —0.1490 0.0132]
O’“T*HJ: °’1’5J= {0.4027 0.3478 0.3571 0.3216 0.2362J

[ Xo.7-en1 [ Xos 0.4448 1.1451 1.7499 2.3708 2.9301
has rank n4+tm=3
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Deep implications for control

Lemma (i) If ug,[0,7—1 is persistently ua(0), -, ua(T = 1) (Gnenown | %a©) - va(T = 1)
exciting of order n -+ t, then any t-long SYSTEM

input/output trajectory of the system

can be expressed as ﬂ

ug(0) ... wa(T —t)
Upg. ¢— U, _ : :
[ [0,¢ 1]} = [Yo’t’T ”1] g [@]: walt—1) ... u(T—1)
Y[o,t—1] 0,t, T—t+1 Yo va0) ... yaT—1)
where g € RT—t+1, wWlt=1) ... g —1)
(ii) Any linear combination of the ﬂ
columns of the matrix of data, i.e., T
UO,t, T=iHril u(k +5t -1) Uy
Yo,6,T—t41 & u(k) N [70] 5(¥)
_y(k+.t71)_

is a t-long input-output trajectory of the
system.

I. Markovsky and P. Rapisarda. “Data-driven simulation and control”. International Journal of Control, 81(12),
1946-1959, 2008.
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DeePC - Data enabled Predictive Control

max Z_: (ly(k +Olig + lu(k + 6)lIZ) + lw(k)II?

glk),wk) =5 a0), - T 1) (o) 40w 1)
B SYSTEM

Uk, k+t—1 Uo,e, T—t+1 0
S.t. [ [ Il = Y, g(k) + W(k) P R )
Yk, k+t—1] 0,t,T—t+1 ;g
wit=1) o T 1)

I

De Pintelier “

Café | =[]
September e

2018

J. Coulson, J. Lygeros, F. Dorfler. “Data-Enabled Predictive Control: In the Shallows of the DeePC." European

Control Conference, 2019.
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Direct data-based control design: stability



Closed-loop data-based representation

Now we introduce a closed-loop data-based representation that
enables the design of controllers without the intermediate step of
estimating the model.

Why should we care about this different solution?

Because
e Sometimes system identification is difficult:

e complex dynamics
e noisy data (without statistics)
e finite number of samples

We skip one step (save computation)

It is intellectually stimulating

It is a systematic approach

It leads to clean analytic formulas
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Closed-loop data-based representation
Arrange the closed loop system as

A+BK=[B A m

By the Fundamental Lemma and Rouché-Capelli Theorem

[K} = [UO’I’T] Gk, for some T X n matrix Gg

/ Xo,7
Hence U
A+BK =B A [)?OITT} Gk = X1,7Gk
having set
AXo,r+Blosr= A[x(0) x(1) ... x(T—=1)]+B[u®0) wu() ... u(T-1)]
- )[?l(i) x(2) ... x(T)
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Data-based parametrization of the closed-loop
Theorem System
x(k + 1) = Ax(k) + Bu(k)

in closed-loop with a state feedback u = Kx has the following
equivalent representation

X(k I 1) = Xl,TGKX(k)
where Gk is a T X n matrix satisfying
K| _ |Uoa,t
[’J - [Xo,T] o

Shift design from K to Gk — then K = UO,l,TGK

C. De Persis, P. Tesi. “Formulas for data-driven control: stability, optimality, robustness”. arXiv:1903.06842 , 15
March 2019.
13 /32



Direct data-based stabilization

Problem Find Gk such that the closed-loop
system
X(k ar 1) = X]_jTGKX(k)

is asymptotically stable

A necessary and sufficient condition is given by the Lyapunov
inequality
P> 0
X1,7Gk - P- G;XIT’T -P=< 0

K|  |Uo1T1
)= [ e

with
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Direct data-based stabilization
e The variable transformation
Y = GkP
and Schur’'s complement reduces it to the data-based LMI

XY YIXIT]
X,tY XorY

with
K| _ |Vo1,716Gk
P XoY

e The solution to the LMI returns Y. The control gain is

obtained via
K= U176k
Y = GkP = K= UO,l,TY(XO,TY)il
P= Xo1Y
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Direct data-based stabilization
Theorem Any matrix Y satisfying

XorY X 1Y
Y'X/'+ Xo1Y

is such that
K= UO,LTY(XO’TY)il

is a stabilizing state-feedback gain for system
x(k + 1) = Ax(k) + Bu(k)

Converse result if K is a stabilizing state-feedback gain for the system, then it
can be written as K = Up1, 7Y (Xo,7Y) ™!

C. De Persis, P. Tesi. “Formulas for data-driven control: stability, optimality, robustness”. arXiv:1903.06842, 15
March 2019.
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Example
Data-based stabilization of the linearized predator-prey model

State response to PE input from experiment

— {0.4027 0.3478 0.3571 0.3216 0.2362]
05 =

)

0.4448 1.1451 1.7499 2.3708 2.9301

X ._ [03478 03571 0.3216 0.2362 0.1541
L5= 111451 1.7499 2.3708 2.9301 3.3409

Solve for Y

cvx_begin sdp

variable Y(T,n)

[XOT*Y X1T*Y; Y’#X1T’ XOT*Y]>=eye(2+*n);
cvx_end

which returns
27.4724  —20.8515

—25.5235 —8.8555

Y =] -16399 —2.0356
5.3938 3.6399

0.1696 18.8019

S. Boyd. “Solving semidefinite programs using cvx,” http://stanford.edu/class/ee363/notes/1lmi-cvx.pdf 17/32


http://stanford.edu/class/ee363/notes/lmi-cvx.pdf

Example

Statex

Feedback gain

K= U07175 Y(X075 Y)_l

2 @ 6 g 10 12 14 16 18

Time k

20

Flgu €. Unforced solution u(k) = 0

=[-8.2995 —1.2512]

Flgu I'€. Solution under data-based feedback u(k) = Kx(k)

Spectral radius data-based controlled system p(A + BK) = 0.5666
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Discussion |

e Simple solution: data-dependent Lyapunov stability theory

e The data-based problem is solvable via efficient numerical
algorithms (cvx)

e |t only requires a finite number of data collected in one-shot
low sample-complexity experiments (T > (m+1)(n+1) — 1)

e A dynamic output feedback control can be designed from data
obtained with a PE input of order (2n+ 1)

e There is no attempt to estimate A, B from data. Data are
only used to represent the gain K.
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Discussion I

e Variations of the arguments used to prove the main result show that the
result holds even using data not obtained from PE data. Recall our main
result

Xo,rY Xu1Y
Y'™X'r XorY

-0 K= U0,17TY(X07TY)71 P= XO,T Y

By Schur's complement, the LMI is rewritten as
Xi,7Y(Xo,r Y) P (Xor V) N (XuTY) =P =0

which shows that
Xi,7Y(Xo, 1Y)
is stable. Then

_ U _
Xi,7Y(X,rY) = [B A [ 0*”} Y (Xo,rY)™}

Xo, T

K
o af
= A+ BK

shows that K = Up1,7Y (Xo,7Y) ™! is stabilizing

H. van Waarde, J. Eising, H. Trentelman, K. Camlibel. “Data informativity: a new perspective on data-driven
analysis and control”. arXiv:1908.00468, 1 August 2019.
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Optimality



Optimality - Linear Quadratic Regulation

LQR problem Design u(0), u(1), u(2), ... that minimizes
o (X0, U Z(X + u(k)TRu(k)), @>=0,R>0
for the system x(k + 1) = Ax(k) + Bu(k), x(0) = xo

The solution is given by
u, = K,x, K,=—(R+B"PB)"'B"PA
with P the stabilizing solution of the DARE

ATPA—P—-ATPB(R+B'PB) 'BTPA+ Q=0
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Data-based solution to LQR

A reformulation of LQR as an optimization problem

mink p.x trace (QP) + trace (X)
subject to
(A+BK)P(A+BK)T —P+1,=0
Pzl
X — RYV2KPKTRY? ~ 0

E. Feron, V. Balakrishnan, S. Boyd, L. El Ghaoui, “Numerical methods for H, related problems,” in 1992 American
Control Conference, pp. 2921-2922.
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Data-based solution to LQR
A similar transformation as before leads to the semidefinite
program
miny x trace (QXp,7Y) + trace (X)

subject to

/ -

X RY2Up 1Y
YT U7, rRY? XoY

XorY =l XuTY

=0
LY X XY

The resulting optimal gain matrix is given by
Ke=Up1,7Y(Xo,7Y)?

which coincides with the DARE-based solution

K.=—(R+B"PB)"1BTPA

C. De Persis, P. Tesi. “Formulas for data-driven control: stability, optimality, robustness”. arXiv:1903.06842, 15
March 2019.
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Discussion

e The data-based problem is solvable via efficient numerical
algorithms (cvx)

cvx_begin sdp
variable Q(T,n)
variable X(m,m) symmetric
minimize ( trace(Q*X0x*Y) +trace(X) )
[X, sqrtm(R)*UO*Y; Y’*U0’*sqrtm(R)’, X0xY] >= 0
[XO*Y-eye(n), X1xY; Y’*X1’, XO0*Y] >= 0
cvx_end

K = UO*Y*(inv(X0*Y));

e |t only requires data collected in one-shot
low sample-complexity experiments

e Solution is exactly computed via a single SDP and
not approximated via sequential iterations as in, e.g.,
Q-learning applied to LQR
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Q-learning and LQR

Algorithm 1 The Q-learning algorithm applied to the LQR problem
1: Guess initial stabilizing gain Ky
2: Set initial time kK =0
3: for i =0 to oo do

4. forj=1to N do

5: Apply u(k) = Kix(k)+ e(k), e(k) PE “exploration signal’
6: Estimate Ki(j) using RLS and |/O measurements

7 k=k+1

8: end for

9: Set Kiy1 = K,(N)

10: end for

There exists an estimation interval N such that the algorithm generates a
sequence {K; : i =0,1,2,...} such that lim ||Ki — K| =0

S.J. Bradtke, B.E. Ydstie and A.G. Barto. Adaptive linear quadratic control using policy iteration. Proceedings of
the 1994 American Control Conference, 3475-3479, 1994.
J.C.H. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279-292, 1992.
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Robustness



Noisy measurements

x(k+1)= Ax(k)+ Bu(k)
C(k) = x(k)+ w(k) k=0,1,2,...

where w is an unknown measurement noise
Experiment
e Consider a PE input ujg 7_1j of order n+t with t =1

e Apply it to the system and collect the measured (hence, noisy)
state response in the n X T matrix

Zor=Xo,1 +Wo T

where
Xo, T = [X(O) x(1) ... x(T- 1)]

Wo Tt = [W(O) w(l) ... W(T—l)}

)
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Data-based representation with noisy measurements

As before, by the Fundamental Lemma

K — Uo7 Gk, for some Gy
/ Zo,T

Hence

U
A+BK=[B A [ 07”} Gk =(Z,7+ Ror )Gk
~~ N~~~

known  uncertainty

having set

AZy 1+ Blo,1, 1 = AXo,r +AWo, 7+ BlUo 1,7
X, 1+ AWo, 1

= Zit— W, 1+ AW T

= Zi,7+ Ro,1
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Robust stabilization with noisy measurements

Theorem Let
“noise-to-

Ro.7Ry+ X 721727 ) .
0,770, T = V4LT4,T signal ratio”

for some v > 0.
Any matrix Y and scalar o > 0 satisfying v < /(4 + 2a) and

Zo1Y —aZitZi s ZiTY I Y
’ o i, 2 = =
=0 |yt ZorY =0

Y'Z'; Zo1Y

is such that
K=Uy17Y(X,7Y)"

is a stabilizing state-feedback gain for system x(k + 1) = Ax(k) + Bu(k).

e In practice, search for the feasible solution maximizing «

e Same results applicable to process disturbances
x(k + 1) = Ax(k) + Bu(k) + d(k)

where d(k) can model, e.g., neglected nonlinearities =
stabilization in the first approximation of nonlinear systems

C. De Persis, P. Tesi. “Formulas for data-driven control: stability, optimality, robustness”. arXiv:1903.06842, 15
March 2019.
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Data-based representation and robust control

An LFT representation
Linear fractional representation

+ : ‘_x
X _(ZLTj—Ii_ Ro,7) Gk x | x=Ax+Bw
Tl [Z7Gk 1] [x oy
z| Gk 0] |w
w = RoyTZ . "
A(9)

Concrete full-block S-procedure [Scherer-Weiland — Th. 6.8] If there exists a
symmetric multiplier M such that

T/—’%
Ro, 1 S| [RoT “ 0
I ST R I | =

and
0O P O O / 0
x x % %[ |P O O 0 Zy, 7Gx |
L X * *} oo @ s|| o 7°
0 0 ST Q Gk O

then a robust stabilizer can be designed.
J. Berberich, A. Romer, C.W. Scherer, F. Allgéwer. “Robust data-driven state-feedback design”. arXiv:1909.04314,
10 Sep 2019. 29/32



Conclusions

A systematic method for the direct design of data-driven control policies for

linear systems

e Stabilization, LQR, output feedback, MIMO systems

Robustness to noise

One-shot experiment of duration n+ 1 (or 2n + 1 — output feedback)

Stabilization in first approximation of nonlinear systems

Formulas for Data-driven Control: Stabilization,
Optimality and Robustness

C. De Persis and P. Tesi

Abstract—In a paper by Willems and coauthors it was shown
that persistently exciting data can be used to represent the input-
output hehavior of a linear system. Based on this fundamental
result, we derive a parametrization of linear feedback systems

fhot mavac tha waw fn calua fmmartant annteal nechlame eine

arXiv:1802.08457 — 15 March 2019

control theory [6], iterative feedback tuning [7], and virtual
reference feedback tuning [8]. This topic is now attracting
more and more researchers, with problems ranging from PID-
like control [9] to model reference control and output tracking
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Outlook

e LMIs and SDPs are ubiquitous in control — this approach can be
used to deal with problems using data to replace models. Start from,
e.g., Scherer-Weiland's textbook (LFT, IQC, LPV) and expand.

e Complex dynamics Nonlinear dynamics uplifted to higher dimension
systems using observable functions give a more accurate
representation (Claude-Fliess-Isidori’'s immersion, Carleman
linearization, polyflow approximation, Koopman operator...). Thus
using more data enables non-regional data-based control of
nonlinear systems.

e Fundamental lemma for nonlinear systems Input-output relation
based on truncated Fliess's fundamental formula (nonlinear
realization theory - Isidori, Chapter 3). This 1/O relation can be
organized in the form of a Hankel matrix whose entries depend on
experimental data. Major difference: Lie rank vs. Hankel rank.

e Large-scale systems Experiments in open-loop for unstable
large-scale systems is unfeasible. Either experiments in closed-loop
+ dither or design local experiments for global results.
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Thank you!



