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What is this talk about?

...and how it is related to the topic of the workshop Resilient
Control of Infrastructure Networks?

• Infrastructure networks may have models too difficult to
derive from first principles or too complex to work with for
design purposes

• Complex networks generate large amount of data

Can we trade off the knowledge of the system’s dynamics against
experimental data and be able to control the system?

This talk introduces a new approach that enables this transition
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Outline

• Closed-loop data-based representations of systems

• Stabilization

• Linear quadratic regulation

• Robustness to noise and disturbances
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What is control?

If physics is the science of understanding the physical environment, then
control theory may be viewed as the science of modifying that environment
[...] Control theory does not deal directly with physical reality but with
mathematical models.

Rudolf Kalman, Control Theory, Encyclopædia Britannica

Mathematical models

x(k + 1) = f (x(k), u(k))
y(k) = h(x(k), u(k))

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k) k = 0, 1, 2, . . .
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Control when the dynamics is unknown

When (A,B) are unknown, one can follow 2 distinct approaches

• System identification from data + control of the identified
system

• A. Chiuso and G. Pillonetto. “System identification: A machine learning perspective”. Annual

Review of Control, Robotics, and Autonomous Systems, 2:281-304, 2019.

• B. Recht. “A tour of reinforcement learning: The view from continuous control”. Annual Review

of Control, Robotics, and Autonomous Systems, 2:253-279, 2019.

• Direct data-based control design (no identification)

• M.C. Campi, A. Lecchini, and S.M. Savaresi. “Virtual reference feedback tuning: a direct method

for the design of feedback controllers”. Automatica, 38(8):1337-1346, 2002.

• C. Novara, L. Fagiano, and M. Milanese. “Direct feedback control design for nonlinear systems”.

Automatica, 49(4):849-860, 2013.
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Persistence of excitation

In the sequel we propose a new approach, which seeks a data-based
representation of the unknown closed-loop dynamics enabled by persistently
exciting input probing signals

Definition The sequence of input values u : [0,T − 1]→ Rm

u(0), u(1), . . . , u(T − 1)

is persistently exciting (PE) of order L if the Hankel matrix associated to
it

U0,L,T−L+1 =




u(0) u(1) . . . u(T − L)
u(1) u(2) . . . u(T − L + 1)

...
...

. . .
...

u(L− 1) u(L) . . . u(T − 1)




has full rank mL.

PE requires sufficiently long probing input sequences: T ≥ (m + 1)L− 1

5 / 32



How to generate PE signals

aux=zeros(m,T);

aux(:)=0.5;

ud(1:m,1:T)=rand(m,T)-aux;

% Computing the Hankel matrix Ud on [0,T-1]

for j=1:T-L+1

for i=1:L

Ud((i-1)*m+1:(i-1)*m+m,j)=ud(1:m, j+i-1);

end

end

Time k
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L = 3, n = 2,m = 1⇒ T = 5

u[0,T−1] = [−0.355 0.353 0.1221 − 0.149 0.0132]

U0,L,T−L+1 =



−0.3550 0.3530 0.1221
0.3530 0.1221 −0.1490
0.1221 −0.1490 0.0132




M. Verhaegen and V. Verdult. Filtering and system identification: a least squares approach. Cambridge University
Press, 2007. 6 / 32



The Fundamental Lemma

A PE input applied to a controllable system produces data that are sufficiently
independent over time

Lemma Let system
x(k + 1) = Ax(k) + Bu(k)

be controllable. Then for any t ≥ 1

u[0,T−1] PE of order n + t ⇒ rank

[
U0,t,T−t+1

X0,T−t+1

]
= n + tm

U0,t,T−t+1 =



u(0) u(1) . . . u(T − t)
u(1) u(2) . . . u(T − t + 1)
u(2) u(3) . . . u(T − t + 2)

.

.

.
u(t − 1) u(t) . . . u(T − 1)


X0,T−t+1 =

[
x(0) x(1) . . . x(T − t)

]

J.C. Willems, P. Rapisarda, I. Markovsky, B.L. De Moor. “A note on persistency of excitation.” Systems & Control
Letters, 54, 4, 325–329, 2005.
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Example
Unknown system – linearized predator-prey model (n = 2, m = 1, t = 1)

x(k + 1) =

 1 −ad

b
bū

a
1

 x(k) +

db
0

 u(k), y(k) = x(k)

UNKNOWN		
SYSTEM	

	

ud(0), . . . , ud(T � 1) yd(0), . . . , yd(T � 1)

Ht,T (ud, yd) =

2
6664

ud(0) ud(1) . . . ud(T � t)
ud(1) ud(2) . . . ud(T � t + 1)

...
...

. . .
...

ud(t � 1) ud(t) . . . ud(T � 1)

3
7775

2
6666666666664

u(k)
u(k + 1)

...
u(k + t � 1)

y(k)
y(k + 1)

...
y(k + t � 1)

3
7777777777775

= Ht,T (ud, yd)g(k)

2

ud(0), . . . , ud(T � 1) yd(0), . . . , yd(T � 1)

Ht,T (ud, yd) =

2
6664

ud(0) ud(1) . . . ud(T � t)
ud(1) ud(2) . . . ud(T � t + 1)

...
...

. . .
...

ud(t � 1) ud(t) . . . ud(T � 1)

3
7775

2
6666666666664

u(k)
u(k + 1)

...
u(k + t � 1)

y(k)
y(k + 1)

...
y(k + t � 1)

3
7777777777775

= Ht,T (ud, yd)g(k)

2


U0

Y0

�
=

2
666666664

ud(0) . . . ud(T � t)
...

. . .
...

ud(t � 1) . . . ud(T � 1)

yd(0) . . . yd(T � t)
...

. . .
...

yd(t � 1) . . . yd(T � 1)

3
777777775

2
666666664

u(k)
...

u(k + t � 1)

y(k)
...

y(k + t � 1)

3
777777775

=


U0

Y0

�
g(k)


u
x

�
=


K
I

�
x =


U0

X0

�
GKx

A + BK =
⇥
B A

⇤ U0

X0

�
GK

= X1GK

3


U0

Y0

�
=

2
666666664

ud(0) . . . ud(T � t)
...

. . .
...

ud(t � 1) . . . ud(T � 1)

yd(0) . . . yd(T � t)
...

. . .
...

yd(t � 1) . . . yd(T � 1)

3
777777775

2
666666664

u(k)
...

u(k + t � 1)

y(k)
...

y(k + t � 1)

3
777777775

=


U0

Y0

�
g(k)


u
x

�
=


K
I

�
x =


U0

X0

�
GKx

A + BK =
⇥
B A

⇤ U0

X0

�
GK

= X1GK

3

[
−0.3550 0.3530 0.1221 −0.1490 0.0132

] [
0.4027 0.3478 0.3571 0.3216 0.2362
0.4448 1.1451 1.7499 2.3708 2.9301

]

The matrix[
U0,t,T−t+1

X0,T−t+1

]
=

[
U0,1,5

X0,5

]
=

−0.3550 0.3530 0.1221 −0.1490 0.0132

0.4027 0.3478 0.3571 0.3216 0.2362
0.4448 1.1451 1.7499 2.3708 2.9301


has rank n + tm = 3
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Deep implications for control

Lemma (i) If ud,[0,T−1] is persistently
exciting of order n + t, then any t-long
input/output trajectory of the system
can be expressed as

[
u[0,t−1]

y[0,t−1]

]
=

[
U0,t,T−t+1

Y0,t,T−t+1

]
g

where g ∈ RT−t+1.
(ii) Any linear combination of the
columns of the matrix of data, i.e.,

[
U0,t,T−t+1

Y0,t,T−t+1

]
g ,

is a t-long input-output trajectory of the
system.
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
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
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I. Markovsky and P. Rapisarda. “Data-driven simulation and control”. International Journal of Control, 81(12),
1946–1959, 2008.
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DeePC - Data enabled Predictive Control

max
g(k),w(k)

t−1∑

`=0

(
‖y(k + `)‖2

Q + ‖u(k + `)‖2
R

)
+ ‖w(k)‖2

s.t.

[
u[k,k+t−1]

y[k,k+t−1]

]
=

[
U0,t,T−t+1

Y0,t,T−t+1

]
g(k) + w(k)

De Pintelier
Café
September
2018
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J. Coulson, J. Lygeros, F. Dörfler. “Data-Enabled Predictive Control: In the Shallows of the DeePC.” European
Control Conference, 2019.
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Direct data-based control design: stability



Closed-loop data-based representation

Now we introduce a closed-loop data-based representation that
enables the design of controllers without the intermediate step of
estimating the model.

Why should we care about this different solution?

Because

• Sometimes system identification is difficult:

• complex dynamics
• noisy data (without statistics)
• finite number of samples

• We skip one step (save computation)

• It is intellectually stimulating

• It is a systematic approach

• It leads to clean analytic formulas
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Closed-loop data-based representation
Arrange the closed loop system as

A + BK =
[
B A

] [K
I

]

By the Fundamental Lemma and Rouché-Capelli Theorem
[
K
I

]
=

[
U0,1,T

X0,T

]
GK , for some T × n matrix GK

Hence

A + BK =
[
B A

] [U0,1,T

X0,T

]
GK = X1,TGK

having set

AX0,T + BU0,1,T = A
[
x(0) x(1) . . . x(T − 1)

]
+ B

[
u(0) u(1) . . . u(T − 1)

]
=

[
x(1) x(2) . . . x(T )

]
=: X1,T
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Data-based parametrization of the closed-loop

Theorem System

x(k + 1) = Ax(k) + Bu(k)

in closed-loop with a state feedback u = Kx has the following
equivalent representation

x(k + 1) = X1,TGKx(k)

where GK is a T × n matrix satisfying

[
K
In

]
=

[
U0,1,T

X0,T

]
GK

Shift design from K to GK – then K = U0,1,TGK

C. De Persis, P. Tesi. “Formulas for data-driven control: stability, optimality, robustness”. arXiv:1903.06842 , 15
March 2019.
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Direct data-based stabilization

Problem Find GK such that the closed-loop
system

x(k + 1) = X1,TGKx(k)

is asymptotically stable

A necessary and sufficient condition is given by the Lyapunov
inequality

P � 0
X1,TGK · P · G>K X>1,T − P ≺ 0

with [
K
In

]
=

[
U0,1,T

X0,T

]
GK
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Direct data-based stabilization

• The variable transformation

Y = GKP

and Schur’s complement reduces it to the data-based LMI
[
X0,TY Y>X>1,T
X1,TY X0,TY

]
� 0

with [
K
P

]
=

[
U0,1,TGK

X0,TY

]

• The solution to the LMI returns Y . The control gain is
obtained via

K = U0,1,TGK

Y = GKP
P = X0,TY

⇒ K = U0,1,TY (X0,TY )−1
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Direct data-based stabilization

Theorem Any matrix Y satisfying

[
X0,T Y X1,TY
Y>X>1,T X0,T Y

]
� 0

is such that
K = U0,1,TY (X0,TY )−1

is a stabilizing state-feedback gain for system

x(k + 1) = Ax(k) + Bu(k)

Converse result if K is a stabilizing state-feedback gain for the system, then it
can be written as K = U0,1,TY (X0,TY )−1

C. De Persis, P. Tesi. “Formulas for data-driven control: stability, optimality, robustness”. arXiv:1903.06842, 15
March 2019.
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Example
Data-based stabilization of the linearized predator-prey model

State response to PE input from experiment

X0,5 =

[
0.4027 0.3478 0.3571 0.3216 0.2362
0.4448 1.1451 1.7499 2.3708 2.9301

]

X1,5 =

[
0.3478 0.3571 0.3216 0.2362 0.1541
1.1451 1.7499 2.3708 2.9301 3.3409

]

Solve for Y

cvx_begin sdp

variable Y(T,n)

[X0T*Y X1T*Y; Y’*X1T’ X0T*Y]>=eye(2*n);

cvx_end

which returns

Y =




27.4724 −20.8515
−25.5235 −8.8555
−1.6399 −2.0356
5.3938 3.6399
0.1696 18.8019




S. Boyd. “Solving semidefinite programs using cvx,” http://stanford.edu/class/ee363/notes/lmi-cvx.pdf
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Example

Feedback gain

K = U0,1,5Y (X0,5Y )−1 =
[
−8.2995 −1.2512

]

Time k
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Figure: Unforced solution u(k) = 0
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Figure: Solution under data-based feedback u(k) = Kx(k)

Spectral radius data-based controlled system ρ(A + BK ) = 0.5666
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Discussion I

• Simple solution: data-dependent Lyapunov stability theory

• The data-based problem is solvable via efficient numerical
algorithms (cvx)

• It only requires a finite number of data collected in one-shot
low sample-complexity experiments (T ≥ (m + 1)(n + 1)− 1)

• A dynamic output feedback control can be designed from data
obtained with a PE input of order (2n + 1)

• There is no attempt to estimate A,B from data. Data are
only used to represent the gain K .
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Discussion II
• Variations of the arguments used to prove the main result show that the

result holds even using data not obtained from PE data. Recall our main
result[

X0,T Y X1,TY
Y>X>1,T X0,T Y

]
� 0 K = U0,1,TY (X0,TY )−1 P = X0,T Y

By Schur’s complement, the LMI is rewritten as

X1,TY (X0,T Y )−1 · P · (X0,T Y )−1(X1,TY )> − P � 0

which shows that
X1,TY (X0,T Y )−1

is stable. Then

X1,TY (X0,TY )−1 =
[
B A

] [U0,1,T

X0,T

]
Y (X0,TY )−1

=
[
B A

] [K
In

]
= A + BK

shows that K = U0,1,TY (X0,TY )−1 is stabilizing

H. van Waarde, J. Eising, H. Trentelman, K. Camlibel. “Data informativity: a new perspective on data-driven
analysis and control”. arXiv:1908.00468, 1 August 2019.
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Optimality



Optimality - Linear Quadratic Regulation

LQR problem Design u(0), u(1), u(2), . . . that minimizes

J∞(x0, u) :=
∞∑

k=0

(x(k)Qx(k) + u(k)>Ru(k)), Q � 0,R � 0

for the system x(k + 1) = Ax(k) + Bu(k), x(0) = x0

The solution is given by

u? := K?x , K? := −(R + B>PB)−1B>PA

with P the stabilizing solution of the DARE

A>PA− P − A>PB(R + B>PB)−1B>PA + Q = 0
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Data-based solution to LQR

A reformulation of LQR as an optimization problem

minK ,P,X trace (QP) + trace (X )

subject to



(A + BK )P(A + BK )> − P + In � 0

P � In

X − R1/2KPK>R1/2 � 0

E. Feron, V. Balakrishnan, S. Boyd, L. El Ghaoui, “Numerical methods for H2 related problems,” in 1992 American
Control Conference, pp. 2921–2922.
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Data-based solution to LQR
A similar transformation as before leads to the semidefinite
program

minY ,X trace (QX0,TY ) + trace (X )

subject to




[
X R1/2U0,1,TY

Y>U>0,1,TR
1/2 X0Y

]
� 0

[
X0,TY − In X1,TY

Y>X>1,T X0,TY

]
� 0

The resulting optimal gain matrix is given by

K? = U0,1,TY (X0,TY )−1

which coincides with the DARE-based solution

K? = −(R + B>PB)−1B>PA
C. De Persis, P. Tesi. “Formulas for data-driven control: stability, optimality, robustness”. arXiv:1903.06842, 15
March 2019.
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Discussion

• The data-based problem is solvable via efficient numerical
algorithms (cvx)

cvx_begin sdp

variable Q(T,n)

variable X(m,m) symmetric

minimize ( trace(Q*X0*Y) +trace(X) )

[X, sqrtm(R)*U0*Y; Y’*U0’*sqrtm(R)’, X0*Y] >= 0

[X0*Y-eye(n), X1*Y; Y’*X1’, X0*Y] >= 0

cvx_end

K = U0*Y*(inv(X0*Y));

• It only requires data collected in one-shot
low sample-complexity experiments

• Solution is exactly computed via a single SDP and
not approximated via sequential iterations as in, e.g.,
Q-learning applied to LQR

24 / 32



Q-learning and LQR

Algorithm 1 The Q-learning algorithm applied to the LQR problem

1: Guess initial stabilizing gain K0

2: Set initial time k = 0
3: for i = 0 to ∞ do
4: for j = 1 to N do
5: Apply u(k) = Kix(k) + e(k), e(k) PE “exploration signal”
6: Estimate Ki (j) using RLS and I/O measurements
7: k = k + 1
8: end for
9: Set Ki+1 = Ki (N)

10: end for

There exists an estimation interval N such that the algorithm generates a
sequence {Ki : i = 0, 1, 2, . . .} such that limi→∞ ‖Ki − K?‖ = 0

S.J. Bradtke, B.E. Ydstie and A.G. Barto. Adaptive linear quadratic control using policy iteration. Proceedings of
the 1994 American Control Conference, 3475–3479, 1994.
J.C.H. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.
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Robustness



Noisy measurements

x(k + 1) = Ax(k) + Bu(k)
ζ(k) = x(k) + w(k) k = 0, 1, 2, . . .

where w is an unknown measurement noise

Experiment

• Consider a PE input u[0,T−1] of order n + t with t = 1

• Apply it to the system and collect the measured (hence, noisy)
state response in the n × T matrix

Z0,T = X0,T + W0,T

where
X0,T =

[
x(0) x(1) . . . x(T − 1)

]

W0,T =
[
w(0) w(1) . . . w(T − 1)

]
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Data-based representation with noisy measurements

As before, by the Fundamental Lemma

[
K
I

]
=

[
U0,1,T

Z0,T

]
GK , for some GK

Hence

A + BK =
[
B A

] [U0,1,T

Z0,T

]
GK = (Z1,T︸︷︷︸

known

+ R0,T︸︷︷︸
uncertainty

)GK

having set

AZ0,T + BU0,1,T = AX0,T + AW0,T + BU0,1,T

= X1,T + AW0,T

= Z1,T −W1,T + AW0,T

=: Z1,T + R0,T
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Robust stabilization with noisy measurements

Theorem Let

R0,TR
>
0,T � γZ1,TZ

>
1,T

“noise-to-
signal ratio”

for some γ > 0.

Any matrix Y and scalar α > 0 satisfying γ < α2/(4 + 2α) and[
Z0,T Y − αZ1,TZ

>
1,T Z1,TY

Y>Z>1,T Z0,T Y

]
� 0

[
IT Y
Y> Z0,T Y

]
� 0

is such that
K = U0,1,TY (X0,TY )−1

is a stabilizing state-feedback gain for system x(k + 1) = Ax(k) + Bu(k).

• In practice, search for the feasible solution maximizing α

• Same results applicable to process disturbances

x(k + 1) = Ax(k) + Bu(k) + d(k)

where d(k) can model, e.g., neglected nonlinearities ⇒
stabilization in the first approximation of nonlinear systems

C. De Persis, P. Tesi. “Formulas for data-driven control: stability, optimality, robustness”. arXiv:1903.06842, 15
March 2019.
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Data-based representation and robust control
An LFT representation

x+ = (Z1,T + R0,T )GK x
m[

x+

z

]
=

[
Z1,TGK I
GK 0

] [
x
w

]

w = R0,T z

Linear fractional representation

156 6.1. LINEAR FRACTIONAL REPRESENTATIONS OF RATIONAL FUNCTIONS

F(d )� �ẋ x
=

ẋ = Ax+Bw
z = Cx+Dw

D(d )

��

�

-
wz

xẋ

Figure 6.1: Linear fractional representation of (6.1.1)

The aim of this section is to represent the uncertain system (6.1.1) in the form

✓
ẋ
z

◆
=

✓
A B
C D

◆✓
x
w

◆
, w = D(d )z (6.1.2)

where D is a function that depends linearly on d . This standard form will be called a linear fractional
representation and the general idea is depicted in Figure 6.1.

In this chapter it will be demonstrated that a linear fractional representation is, in fact, a very general
and powerful tool to represent uncertainty in dynamical systems. Among the key results, we will
show that any system of the form (6.1.1) where F depends rationally on d can be written in the form
(6.1.2). To study these representations, it will be essential to identify, as usual, the matrix F(d ) with
the linear function F(d ) : Rn ! Rn that maps h 7! x := F(d )h .

Definition 6.1 A linear fractional representation (LFR) of F(d ) is a pair (H,D(d )) where

H =

✓
A B
C D

◆

is a constant partitioned real-valued matrix and D is a linear function of d such that for all d for
which I �DD(d ) is invertible and for all (h ,x ) there holds x = F(d )h if and only if there exist
vectors w and z such that

✓
x
z

◆
=

✓
A B
C D

◆✓
h
w

◆
, w = D(d )z. (6.1.3)

The LFR is said to be well posed at d if I �DD(d ) is non-singular. We occasionally call D(d ) the
parameter-block of the LFR.

156 Compilation: April 2019

Concrete full-block S-procedure [Scherer-Weiland – Th. 6.8] If there exists a
symmetric multiplier M such that[

R0,T

I

]> M︷ ︸︸ ︷[
Q S
S> R

] [
R0,T

I

]
� 0

and [
? ? ? ?
? ? ? ?

]
0 P 0 0
P 0 0 0
0 0 Q S
0 0 S> Q




I 0
Z1,TGK I

0 I
GK 0

 ≺ 0

then a robust stabilizer can be designed.
J. Berberich, A. Romer, C.W. Scherer, F. Allgöwer. “Robust data-driven state-feedback design”. arXiv:1909.04314,
10 Sep 2019. 29 / 32



Conclusions

A systematic method for the direct design of data-driven control policies for
linear systems

• Stabilization, LQR, output feedback, MIMO systems

• One-shot experiment of duration n + 1 (or 2n + 1 – output feedback)

• Robustness to noise

• Stabilization in first approximation of nonlinear systems

1

Formulas for Data-driven Control: Stabilization,
Optimality and Robustness

C. De Persis and P. Tesi

Abstract—In a paper by Willems and coauthors it was shown
that persistently exciting data can be used to represent the input-
output behavior of a linear system. Based on this fundamental
result, we derive a parametrization of linear feedback systems
that paves the way to solve important control problems using
data-dependent Linear Matrix Inequalities only. The result is
remarkable in that no explicit system’s matrices identification is
required. The examples of control problems we solve include the
state and output feedback stabilization, and the linear quadratic
regulation problem. We also discuss robustness to noise-corrupted
measurements and show how the approach can be used to
stabilize unstable equilibria of nonlinear systems.

I. INTRODUCTION

LEARNING from data is essential to every area of science.
It is the core of statistics and artificial intelligence, and is

becoming ever more prevalent also in the engineering domain.
Control engineering is one of the domains where learning from
data is now considered as a prime issue.

Learning from data is actually not novel in control theory.
System identification [1] is one of the major developments
of this paradigm, where modeling based on first principles is
replaced by data-driven learning algorithms. Prediction error,
maximum likelihood as well as subspace methods [2] are
all data-driven techniques which can be now regarded as
standard for what concerns modeling. The learning-from-data
paradigm has been widely pursued also for control design
purposes. A main question is how to design control sys-
tems directly from process data with no intermediate system
identification step. Besides their theoretical value, answers to
this question could have a major practical impact especially
in those situations where identifying a process model can
be difficult and time consuming, for instance when data are
affected by noise or in the presence of nonlinear dynamics.
Despite many developments in this area, data-driven control
is not yet well understood even if we restrict the attention to
linear dynamics, which contrasts the achievements obtained in
system identification. A major challenge is how to incorporate
data-dependent stability and performance requirements in the
control design procedure.

Literature review
Contributions to data-driven control can be traced back

to the pioneering work by Ziegler and Nichols [3], direct
adaptive control [4] and neural networks [5] theories. Since
then, many techniques have been developed under the heading
data-driven and model-free control. We mention unfalsified

C. De Persis is with ENTEG and the J.C. Willems Center for Systems
and Control, University of Groningen, 9747 AG Groningen, The Netherlands.
Email: c.de.persis@rug.nl. P. Tesi is with DINFO, University of
Florence, 50139 Firenze, Italy E-mail: pietro.tesi@unifi.it.

control theory [6], iterative feedback tuning [7], and virtual
reference feedback tuning [8]. This topic is now attracting
more and more researchers, with problems ranging from PID-
like control [9] to model reference control and output tracking
[10], [11], [12], [13], [14], predictive [15], [16], robust [17]
and optimal control [18], [19], [20], [21], [22], [23], [24], the
latter being one of the most frequently considered problems.
The corresponding techniques are also quite varied, ranging
from dynamics programming to optimization techniques and
algebraic methods. These contributions also differ with respect
to how learning is approached. Some methods only use a batch
of process data meaning that learning is performed off-line,
while other methods are iterative and require multiple on-
line experiments. We refer the reader to [25], [26] for more
references on data-driven control methods.

Willems et al.’s fundamental lemma and paper contribution
A central question in data-driven control is how to replace

process models with data. For linear systems, there is actually
a fundamental result which answers this question, proposed
by Willems et al. [27]. Roughly, this result stipulates that the
whole set of trajectories that a linear system can generate can
be represented by a finite set of system trajectories provided
that such trajectories come from sufficiently excited dynamics.
While this result has been (more or less explicitly) used for
data-driven control design [16], [18], [28], [29], [30], certain
implications of the so-called Willems et al.’s fundamental
lemma seems not fully exploited.

In this paper, we first revisit Willems et al.’s fundamental
lemma, originally cast in the behavioral framework, through
classic state-space descriptions (Lemma 2). Next, we show that
this result can be used to get a data-dependent representation
of the open-loop and closed-loop dynamics under a feedback
interconnection. The first result (Theorem 1) indicates that
the parametrization that emerges from the fundamental lemma
is in fact the solution to a classic least-squares problem,
and has clear connections with the so-called Dynamic Mode
Decomposition [31]. The second result (Theorem 2) is even
more interesting as it provides a data-based representation of
the closed-loop system transition matrix, where the controller
is itself parametrized through data.

Theorem 2 turns out to have surprisingly straightforward,
yet profound, implications for control design. We discuss this
fact in Section IV. The main point is that the parametriza-
tion provided in Theorem 2 can be naturally related to the
classic Lyapunov stability inequalities. This makes it possible
to cast the problem of designing state-feedback controllers
in terms of a simple Linear Matrix Inequality (LMI) [32]
(Theorem 3). In Theorem 4, the same arguments are used to

arXiv:1802.08457 – 15 March 2019
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Outlook

• LMIs and SDPs are ubiquitous in control – this approach can be
used to deal with problems using data to replace models. Start from,
e.g., Scherer-Weiland’s textbook (LFT, IQC, LPV) and expand.

• Complex dynamics Nonlinear dynamics uplifted to higher dimension
systems using observable functions give a more accurate
representation (Claude-Fliess-Isidori’s immersion, Carleman
linearization, polyflow approximation, Koopman operator...). Thus
using more data enables non-regional data-based control of
nonlinear systems.

• Fundamental lemma for nonlinear systems Input-output relation
based on truncated Fliess’s fundamental formula (nonlinear
realization theory - Isidori, Chapter 3). This I/O relation can be
organized in the form of a Hankel matrix whose entries depend on
experimental data. Major difference: Lie rank vs. Hankel rank.

• Large-scale systems Experiments in open-loop for unstable
large-scale systems is unfeasible. Either experiments in closed-loop
+ dither or design local experiments for global results.
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Thank you!


