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Perspectives on model-based control

Single system level:
• modeling & system ID

are very expensive
• models not always

useful for control
• need for end-to-end

automation solutions

From experiment design to closed-loop control!

Håkan Hjalmarsson∗

Department of Signals, Sensors and Systems, Royal Institute of Technology, S-100 44 Stockholm, Sweden

1. Introduction

Ever increasing productivity demands and environmental

standards necessitate more and more advanced control meth-

ods to be employed in industry. However, such methods usu-

ally require a model of the process and modeling and system

identification are expensive. Quoting (Ogunnaike, 1996):

“It is also widely recognized, however, that obtaining the

process model is the single most time consuming task in the

application of model-based control.”

In Hussain (1999) it is reported that three quarters of the

total costs associated with advanced control projects can

be attributed to modeling. It is estimated that models exist

for far less than one percent of all processes in regulatory

control. According to Desborough and Miller (2001), one of

the few instances when the cost of dynamic modeling can

be justified is for the commissioning of model predictive

controllers.

It has also been recognized that models for control pose

special considerations. Again quoting (Ogunnaike, 1996):

“There is abundant evidence in industrial practice that

when modeling for control is not based on criteria related

to the actual end use, the results can sometimes be quite

disappointing.”

Hence, efficient modeling and system identification tech-

niques suited for industrial use and tailored for control de-

sign applications have become important enablers for indus-

trial advances. The Panel for Future Directions in Control,

(Murray, Åström, Boyd, Brockett, & Stein, 2003), has iden-

tified automatic synthesis of control algorithms, with inte-

grated validation and verification as one of the major future

challenges in control. Quoting (Murray et al., 2003):

“Researchers need to develop much more powerful design

tools that automate the entire control design process from

model development to hardware-in-the-loop simulation.”

Critical infrastructure level: (especially in energy)
• subsystem (device) models & controls are proprietary
• infrastructure (network) owned by many entities/countries
• operating points/modes are in flux & constantly changing





nobody has
any dynamic
models . . .
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Control in a data-rich world
• ever-growing trend in CS & applications:

data-driven control by-passing models
• canonical problem: black/gray-box

system control based on I/O samples

Q: Why give up physical modeling and
reliable model-based algorithms ?

data-driven

control

u2

u1 y1

y2

Data-driven control is viable alternative when
• models are too complex to be useful

(e.g., fluids, wind farms, & building automation)

• first-principle models are not conceivable
(e.g., human-in-the-loop, biology, & perception)

• modeling & system ID is too cumbersome
(e.g., robotics & electronics applications)

Central promise: It
is often easier to learn
control policies directly
from data, rather than
learning a model.
Example: PID
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Snippets from the literature
1. reinforcement learning / stochastic adaptive control

/ dual control / approximate dynamic programming
ø not suitable for physical, real-time, & safety-critical

unknown system

a
c
ti
o
n

o
b
s
e
rv

a
tio

n

reward

estimate

reinforcement learning control

robust/adaptive

control

u

y

?

2. gray-box safe learning & control (adaptive)
ø limited applicability: need a-priori safety

3. sequential system ID + UQ + control
→ recent finite-sample & end-to-end ID +

UQ + control pipelines out-performing RL
ø ID seeks best but not most useful model
→ “easier to learn policies than models”

u2

u1 y1

y2

+ ?
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Colorful idea

y4y2

y1
y3 y5

y6

y7

u2 = u3 = · · · = 0

u1 = 1

x0 =0

If you had the impulse response of a LTI system, then . . .
• can identify model (e.g., transfer function or Kalman-Ho realization)

• . . . but can also build predictive model directly from raw data :

yfuture(t) =
[
y1 y2 y3 . . .

]
·




ufuture(t)
ufuture(t− 1)
ufuture(t− 2)

...




• model predictive control from data: dynamic matrix control (DMC)

• today: can we do so with arbitrary, finite, and corrupted I/O samples ?
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Preview
complex 4-area power system:
large (n=208), few sensors (8),
nonlinear, noisy, stiff, input
constraints, & decentralized
control specifications

control objective: damping of
inter-area oscillations via HVDC
link but without model
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Behavioral view on LTI systems
Definition: A discrete-time dynamical
system is a 3-tuple (Z≥0,W,B) where

(i) Z≥0 is the discrete-time axis,

(ii) W is a signal space, and

(iii) B ⊆ WZ≥0 is the behavior.

Definition: The dynamical system (Z≥0,W,B) is
(i) linear if W is a vector space & B is a subspace of WZ≥0

(ii) and time-invariant if B ⊆ σB, where σwt = wt+1.

B = set of trajectories & BT is restriction to t ∈ [0, T ]

y

u
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LTI systems and matrix time series
foundation of state-space subspace system ID & signal recovery algorithms

u(t)

t

u4

u2

u1 u3

u5
u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

(
u(t), y(t)

)
satisfy recursive

difference equation
b0ut+b1ut+1+. . .+bnut+n+

a0yt+a1yt+1+. . .+anyt+n = 0

(ARMA / kernel representation)

⇐
under assumptions

⇒

[ b0 a0 b1 a1 ... bn an ] spans left nullspace
of Hankel matrix (collected from data)

HL ( uy ) =




(u1
y1) (u2

y2) (u3
y3) · · ·

(uT−L+1
yT−L+1

)

(u2
y2) (u3

y3) (u4
y4) · · ·

...

(u3
y3) (u4

y4) (u5
y5) · · ·

...
...

. . .
. . .

. . .
...

(uLyL) · · · · · · · · · (uTyT )



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The Fundamental Lemma
Definition : The signal u = col(u1, . . . , uT ) ∈ RmT is persistently

exciting of order L if HL(u) =



u1 ··· uT−L+1

...
. . .

...

uL ··· uT


 is of full row rank,

i.e., if the signal is sufficiently rich and long (T − L+ 1 ≥ mL).

Fundamental Lemma [Willems et al, ’05] : Let T, t ∈ Z>0, Consider
• a controllable LTI system (Z≥0,Rm+p,B), and
• a T -sample long trajectory col(u, y) ∈ BT , where
• u is persistently exciting of order t+ n (prediction span + # states).

Then colspan (Ht ( uy )) = Bt .
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Cartoon of Fundamental Lemma
u(t)

t

u4

u2

u1 u3

u5
u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

persistently exciting controllable LTI sufficiently many samples

xk+1 =Axk + Buk

yk =Cxk + Duk

colspan




( u1
y1 ) ( u2

y2 ) ( u3
y3 ) . . .

( u2
y2 ) ( u3

y3 ) ( u4
y4 ) . . .

( u3
y3 ) ( u4

y4 ) ( u5
y5 ) . . .

...
. . .

. . .
. . .




︸ ︷︷ ︸ ︸ ︷︷ ︸
parametric state-space model non-parametric model from raw data

all trajectories constructible from finitely many previous trajectories
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Data-driven simulation [Markovsky & Rapisarda ’08]

Problem : predict future output y ∈ Rp·Tfuture based on
• input signal u ∈ Rm·Tfuture

• past data col(ud, yd) ∈ BTdata

→ to predict forward

→ to form Hankel matrix

Assume: B controllable & ud persistently exciting of order Tfuture + n

Solution: given (u1, . . . , uTfuture )→ compute g & (y1, . . . , yTfuture ) from



ud
1 ud

2 · · · ud
T−N+1

...
...

. . .
...

ud
Tfuture

ud
Tfuture+1 · · · ud

T

yd
1 yd

2 · · · yd
T−N+1

...
...

. . .
...

yd
Tfuture

yd
Tfuture+1 · · · yd

T




g =




u1

...
uTfuture

y1

...
yTfuture




Issue: predicted output is not unique→ need to set initial conditions!
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Refined problem : predict future output y ∈ Rp·Tfuture based on
• initial trajectory col(uini, yini) ∈ R(m+p)Tini

• input signal u ∈ Rm·Tfuture

• past data col(ud, yd) ∈ BTdata

→ to estimate initial xini

→ to predict forward

→ to form Hankel matrix

Assume: B controllable & ud persist. exciting of order Tini+Tfuture+n

Solution: given (u1, . . . , uTfuture ) & col(uini, yini)

→ compute g & (y1, . . . , yTfuture ) from

⇒ if Tini ≥ lag of system, then y is unique




Up

Yp

Uf

Yf


 g =




uini
yini
u
y




[
Up

Uf

]
,




ud
1 · · · ud

T−Tfuture−Tini+1

...
. . .

...

ud
Tini

· · · ud
T−Tfuture

ud
Tini+1 · · · ud

T−Tfuture+1

...
. . .

...

ud
Tini+Tfuture

· · · ud
T




[
Yp

Yf

]
,




yd
1 · · · yd

T−Tfuture−Tini+1

...
. . .

...

yd
Tini

· · · yd
T−Tfuture

yd
Tini+1 · · · yd

T−Tfuture+1

...
. . .

...

yd
Tini+Tfuture

· · · yd
T



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Control from Hankel matrix data

We are all writing merely the dramatic corollaries . . .

implicit (computational)

→ Ivan Markovsky & ourselves

explicit (control policy)

→ Claudio de Persis & Pietro Tesi

recently gaining lots of momentum with contributions by
C. Scherer, F. Allgöwer, K. Camlibel, H. Trentelman, . . .
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Output Model Predictive Control
The canonical receding-horizon MPC optimization problem :

minimize
u, x, y

Tfuture−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R

subject to xk+1 = Axk +Buk, ∀k ∈ {0, . . . , Tfuture − 1},
yk = Cxk +Duk, ∀k ∈ {0, . . . , Tfuture − 1},
xk+1 = Axk +Buk, ∀k ∈ {−Tini − 1, . . . ,−1},
yk = Cxk +Duk, ∀k ∈ {−Tini − 1, . . . ,−1},
uk ∈ U , ∀k ∈ {0, . . . , Tfuture − 1},
yk ∈ Y, ∀k ∈ {0, . . . , Tfuture − 1}

quadratic cost with
R � 0, Q � 0 & ref. r

model for prediction
over k ∈ [0, Tfuture − 1]

model for estimation
(many variations)

hard operational or
safety constraints

For a deterministic LTI plant and an exact model of the plant,
MPC is the gold standard of control : safe, optimal, tracking, . . .
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Data-Enabled Predictive Control
DeePC uses non-parametric and data-based Hankel matrix time series
as prediction/estimation model inside MPC optimization problem:

minimize
g, u, y

Tfuture−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R

subject to




Up

Yp

Uf

Yf


 g =




uini
yini
u
y


 ,

uk ∈ U , ∀k ∈ {0, . . . , Tfuture − 1},
yk ∈ Y, ∀k ∈ {0, . . . , Tfuture − 1}

quadratic cost with
R � 0, Q � 0 & ref. r

non-parametric
model for prediction
and estimation

hard operational or
safety constraints

• Hankel matrix with Tini + Tfuture rows from past data[
Up

Uf

]
= HTini+Tfuture (ud) and

[
Yp

Yf

]
= HTini+Tfuture (yd)

• past Tini ≥ lag samples (uini, yini) for xini estimation

collected offline
(could be adapted online)

updated online
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Correctness for LTI Systems
Theorem: Consider a controllable LTI system and the DeePC &
MPC optimization problems with persistently exciting data of order
Tini+Tfuture+n. Then the feasible sets of DeePC & MPC coincide.

Corollary: If U ,Y are convex, then also the trajectories coincide.

Aerial robotics case study :
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Thus, MPC carries over to DeePC
. . . at least in the nominal case.

(see e.g. [Berberich, Köhler, Müller, & Allgöwer ’19] for stability proofs)

Beyond LTI, what about measurement noise,
corrupted past data, and nonlinearities ?



Noisy real-time measurements

minimize
g, u, y

Tfuture−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R + λy‖σy‖1

subject to




Up

Yp

Uf

Yf


 g =




uini
yini
u
y


 +




0
σy
0
0


 ,

uk ∈ U , ∀k ∈ {0, . . . , Tfuture − 1},
yk ∈ Y, ∀k ∈ {0, . . . , Tfuture − 1}

Solution : add slack
to ensure feasibility
with `1-penalty
⇒ for λy sufficiently
large σy 6= 0 only if
constraint infeasible

c.f. sensitivity analysis
over randomized sims
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Hankel matrix corrupted by noise

minimize
g, u, y

Tfuture−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R + λg‖g‖1

subject to




Up

Yp

Uf

Yf


 g =




uini
yini
u
y


 ,

uk ∈ U , ∀k ∈ {0, . . . , Tfuture − 1},
yk ∈ Y, ∀k ∈ {0, . . . , Tfuture − 1}

Solution : add a
`1-penalty on g

intuition: `1 sparsely selects
{Hankel matrix columns}
= {past trajectories}
= {motion primitives}

c.f. sensitivity analysis
over randomized sims
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Towards nonlinear systems . . .
Idea : lift nonlinear system to large/∞-dimensional bi-/linear system
→ Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods
→ nonlinear dynamics can be approximated LTI on finite horizons

→ exploit size rather than nonlinearity and find features in data
→ regularization singles out relevant features / basis functions

case study :
regularization
for g and σy

-1.5

1

-1

0.5
-0.2

-0.5

00

0

0.2
-0.5 0.4

0.5

0.6-1

1

1.5

2

0 10 20 30 40 50 60

s

-3

-2

-1

0

1

2

3

m

DeePC

x
DeePC

y
DeePC

z
DeePC

x
ref

y
ref

z
ref

Constraints

19/37



Experimental snippet
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recall the central promise :
it is easier to learn control
policies directly from data,

rather than learning a model



Comparison to system ID + MPC
Setup : nonlinear stochastic quadcopter model with full state info
DeePC + `1-regularization for g and σy
MPC : system ID via prediction error method + nominal MPC
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from heuristics &
numerical promises

to theorems



Robust problem formulation
1. the nominal problem (without g-regularization)

minimize
g, u, y

Tfuture−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R + λy‖σy‖1

subject to




Up

Ŷp

Uf

Ŷf


 g =




uini
ŷini
u
y


+




0
σy
0
0


 ,

uk ∈ U , ∀k ∈ {0, . . . , Tfuture − 1}
where ·̂ denotes measured & thus possibly corrupted data

2. abstraction of the problem after eliminating
(
u, y, σy

)
: minimize

g ∈ G
c
(
ξ̂, g
)

with samples ξ̂ =
(
Ŷp, Ŷf , ŷini

)
& G = {g : Upg = uini & Ufg ∈ U}
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3. a further abstraction minimize
g ∈ G

c
(
ξ̂, g
)

= minimize
g ∈ G

EP̂ [c (ξ, g)]

where P̂ = δξ̂ denotes the empirical distribution from which we obtained ξ̂

⇒ poor out-of-sample performance of above sample-average solution g?

for real problem: EP [c (ξ, g?)] where P is the unknown distribution of ξ

4. distributionally robust formulation:

inf
g∈G

sup
Q∈Bε(P̂ )

EQ [c (ξ, g)]

where the ambiguity set Bε(P̂ ) is an
ε-Wasserstein ball centered at P̂ :

Bε(P̂ ) =

{
P : inf

Π

∫ ∥∥ξ − ξ̂
∥∥
W
dΠ ≤ ε

}

where Π has marginals P̂ and P

ξ̂

ξ

P̂

P

Π
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note: Wasserstein ball does not
only include LTI systems with
additive Gaussian noise but

“everything” (integrable)



4. distributionally robust formulation inf
g∈G

sup
Q∈Bε(P̂ )

EQ [c (ξ, g)]

where the ambiguity set Bε(P̂ ) is an ε-Wasserstein ball centered at P̂ :

Bε(P̂ ) =

{
P : inf

Π

∫ ∥∥ξ − ξ̂
∥∥
W
dΠ ≤ ε

}
where Π has marginals P̂ and P

Theorem : Under minor technical conditions:

inf
g∈G

sup
Q∈Bε(P̂ )

EQ [c (ξ, g)] ≡ min
g∈G

c
(
ξ̂, g
)

+ εLip(c) · ‖g‖?W

Cor : `∞-robustness in trajectory space⇔ `1-regularization of DeePC

Proof uses methods by Kuhn & Esfahani:
semi-infinite problem becomes finite after
marginalization & for discrete worst case
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Explicit relation to system ID & MPC
1. regularized DeePC problem

minimize
g, u ∈ U , y ∈ Y

f(u, y) + λg‖g‖22

subject to




Up

Yp

Uf

Yf


 g =




uini
yini
u
y




2. standard model-based MPC
(ARMA parameterization)

minimize
u ∈ U , y ∈ Y

f(u, y)

subject to y = K



uini
yini
u




3. subspace ID y = Yf g
?

where g? = g?(uini, yini, u) solves

arg min
g

‖g‖22

subject to



Up

Yp

Uf


 g =



uini
yini
u




4. equivalent prediction error ID

minimize
K

∑

j

∥∥∥∥∥∥
yd
j −K



uini

d
j

yini
d
j

ud
j



∥∥∥∥∥∥

2

→ y = K



uini
yini
u


 = Yf g

?
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subsequent ID & MPC

minimize
u ∈ U , y ∈ Y

f(u, y)

subject to y = K



uini
yini
u




where K solves

arg min
K

∑

j

∥∥∥∥∥∥
yj −K



uinij
yinij
uj



∥∥∥∥∥∥

2

≡

minimize
u ∈ U , y ∈ Y

f(u, y)

subject to

[
y
u

]
=

[
Yf

Uf

]
g

where g solves

arg min
g

‖g‖22

subject to



Up

Yp

Uf


 g =



uini
yini
u




regularized DeePC

minimize
g, u ∈ U , y ∈ Y

f(u, y) + λg‖g‖22

subject to




Up

Yp

Uf

Yf


 g =




uini
yini
u
y




⇒ feasible set of ID & MPC
⊆ feasible set for DeePC

⇒ DeePC ≤ MPC + λg· ID

“easier to learn control policies
from data rather than models” 26/37



DeePC vs. System ID & MPC
“It is easier to learn control policies from data rather than models.”

1) Optimality certificate for subspace & prediction error ID methods

control cost + λg · regularizer
︸ ︷︷ ︸

cost of DeePC

≤ control cost + λg · ID loss function
︸ ︷︷ ︸

cost of model-based approach

Proof sketch: both problems have the same feasible set, but finding the
best control subject to a model minimizing fit criterion is a bi-level problem

2) Data informativity [Camlibel, Trentelman et al. ’19]

data-driven (DeePC) control is feasible even data is not rich enough for ID

3) DeePC = ID for control: model-fit criterion biased by control objective
Example: objective is to track sin(ω t)⇒ identify best model near ω 27/37



DeePC vs. System ID & MPC
4) Observations across many case studies from robotics & energy:

N4SID

DeePC

Open-loop tracking error (% increase wrt optimal)

→ often similar performance

→ direct (DeePC) approach
appears more robust to
outliers than indirect (ID
+ MPC) approaches

→ direct often outperforms
indirect — almost always in
nonlinear closed loop

to be further explored . . .
28/37



application: end-to-end
automation in energy systems



Power system case study
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• complex 4-area power system: large (n = 208), few measurements (8),
nonlinear, noisy, stiff, input constraints, & decentralized control

• control objective: damping of inter-area oscillations via HVDC link
• real-time MPC & DeePC prohibitive→ choose T , Tini, & Tfuture wisely

29/37



Centralized control
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Fig. 5. Time-domain responses of the four-area system with the practical
setting. The DeePC (or PEM-MPC) is activated at t = 10s. —– without
wide-area control; —– with PEM-MPC (s = 60); —– with DeePC (s = 60).

Closed‐loop cost
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Fig. 6. Cost comparison of DeePC and PEM-MPC under the practical setting.

Fig.7 plots the closed-loop cost (from 10s to 30) of the
system with different DeePC parameters, which shows that a)
the closed-loop cost dramatically drops with the increase of the
prediction horizon N and then remains within an acceptable
range (here we set k = N

2 ); b) the closed-loop cost drops
when T is increased from 800 to 1000 and then remains nearly
the same if further increasing T ; c) the closed-loop cost drops
with the increase of Tini from 5 to 40 and remains basically the
same with a larger Tini; and d) the system may have undesired
closed-loop cost with a relatively small (or with a relatively
large) �g but presents anticipated performance in between,
which coincides with the fact the regularization on g provides
robustness against noisy measurements. Note that setting a too
large �g (e.g., �g > 104) makes (5) focuses on minimizing
kgk2

2 and results in inferior input/output performance. Fig.7
also indicates the robustness of the DeePC with regards to the
choices of parameters, that is, the system presents anticipated
performance with proper regularization on g (�g generally has
a wide admissible range) and sufficiently large N , Tini and T .

IV. MIN-MAX DEEPC

The DeePC algorithm presented above acts as a centralized
wide-area control, which is not resilient to communication fail-
ures and less reliable than decentralized approaches especially
when more VSC-HVDC stations are considered. To this end,
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Fig. 7. Closed-loop cost of the system with different DeePC parameters.

we present a Min-Max DeePC algorithm which further enables
decentralized wide-area control.

A. Basic Formulation
We extend the unknown LTI system in (1) by adding a

measurable disturbance vector wt 2 Rq to (1) as
⇢

xt+1 = Axt + But + Ewt

yt = Cxt + Dut + Fwt
, (9)

where E 2 Rn⇥q and F 2 Rp⇥q .
To be specific, the unknown system is subjected to some ex-

ternal disturbances (wt) whose past trajectory can be measured
but the future trajectory is unknown. Let wd be a disturbance
trajectory of length T (i.e., wd 2 RqT ) measured from the
unknown system such that col(ud, wd) is persistently exciting
of order Tini + N + n. Note that here wt is regarded as an
uncontrollable input vector of the unknown system. Similar
to ud and yd, we use wd to construct the Hankel matrix
HTini+N (wd), which is further partitioned into two parts as


WP

WF

�
:= HTini+N (wd) , (10)

where WP 2 RqTini⇥(T�Tini�N+1) and WF 2
RqN⇥(T�Tini�N+1).

Then, similar to (4), col(uini, wini, yini, u, w, y) is a trajec-
tory of the unknown system (9) if and only if there exists
g 2 RT�Tini�N+1 such that

2
6666664

UP

WP

YP

UF

WF

YF

3
7777775

g =

2
6666664

uini

wini

yini

u
w
y

3
7777775

, (11)

where wini 2 RqTini is the most recent measured disturbance
trajectory and w = col(w0, w1, ..., wN�1) 2 RqN is the future
disturbance trajectory, which is unknown but assumed to be
bounded as wt 2 [w, w̄].

= Prediction Error
Method (PEM)
System ID + MPC

t < 10 s : open loop
data collection with
white noise excitat.

t > 10 s : control
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Performance: DeePC wins (clearly!)

Closed‐loop cost

N
u
m
b
er
 o
f 
si
m
u
la
ti
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n
s

DeePC
PEM‐MPC

Measured closed-loop cost =
∑

k ‖yk − rk‖2Q + ‖uk‖2R
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DeePC hyper-parameter tuning
C
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Tfuture

regularizer λg
• for distributional robustness
≈ radius of Wasserstein ball
• wide range of sweet spots

→ choose λg = 20

estimation horizon Tini

• for model complexity ≈ n
• Tini ≥ 50 is sufficient & low

computational complexity

→ choose Tini = 60
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Tfuture

prediction horizon Tfuture

• long enough for stability

→ choose Tfuture = 120 and
apply first 60 input steps

data length T

• long enough for persistent
excitation but accordingly
card(g) = T −Tini−Tfuture +1

→ choose T = 1500
(Hankel matrix ≈ square)
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Computational cost

time (s)
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• T = 1500

• λg = 20

• Tini = 60

• Tfuture = 120 and apply first
60 input steps
• sampling time = 0.02 s
• solver (OSQP) time = 1 s

(on Intel Core i5 7200U)
⇒ implementable
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Decentralized implementation
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• plug’n’play MPC: treat interconnection P3 as disturbance variable w
with past disturbance wini measurable & future wfuture ∈ W uncertain
• for each controller augment Hankel matrix with data Wp and Wf

• decentralized robust min-max DeePC: ming,u,y maxw∈W 35/37



Decentralized control performance
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• colors correspond
to different hyper-
parameter settings
(not discernible)

• ambiguity setW
is∞-ball (box)

• for computational
efficiencyW is
downsampled
(piece-wise linear)

• solver time ≈ 2.6 s

⇒ implementable
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Summary & conclusions
• fundamental lemma from behavioral systems
• matrix time series serves as predictive model
• data-enabled predictive control (DeePC)

X certificates for deterministic LTI systems
X distributional robustness via regularizations
X outperforms ID + MPC in optimization metric

→ certificates for nonlinear & stochastic setup
→ adaptive extensions, explicit policies, . . .
→ applications to building automation, bio, etc.
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Why have these
powerful ideas
not been mixed
long before ?

Willems ’07: “[MPC] has perhaps too little system
theory and too much brute force computation in it.”

The other side often proclaims “behavioral systems
theory is beautiful but did not prove utterly useful”
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