

Acknowledgments

Assad Alam, Ericsson Bart Besselink, U Groningen Farhad Farokhi, U Melbourne Sebastian van de Hoef, HERE Jeff Larson, Argonne NL Kuo-Yun Liang, Scania Ehsan Nekouei, City U HK Per Sahlholm, Scania Håkan Terelius, Google

Mladen Cicic Dirk van Dooren Yulong Gao Frank Jiang Alexander Johansson Elis Stefansson

Valerio Turri Jonas Mårtensson

And other collaborators

The Problem

How to efficiently transport goods over a highway network?

Characteristics

- 2 000 000 heavy long-haulage trucks in EU
 - 400 000 in Germany
- · Large distributed control system with no real-time coordination today
- A few large and many small fleet owners with heterogeneous truck fleets
 - 97% operate 20 or fewer trucks in US
- · Tight delivery deadlines and high expectations on reliability

Goal: Maximize automation and fuel-saving cooperations with limited intervention in vehicle speed, route, and timing

How to Control Inter-vehicular Spacings?

- Limited sensing and inter-vehicle communication suggests distributed control strategy
- Important to attenuate disturbances: string stability
- Extensively studied problem in ideal environments
 - E.g., Levine & Athans (1966), Peppard (1974), Ioannou & Chien (1993), Swaroop et al. (1994), Stankovic et al. (2000), Seiler et al. (2004), Naus et al. (2010)

Constant Time Gap Spacing Policy

For the constant time gap policy it holds that

$$s_i(t) = s_{i-1}(t - \Delta t) \iff v_i(s) = v_{i-1}(s)$$

Control objective: $v_i(t) \rightarrow v_{\mathsf{ref}}(s_i(t))$,

$$s_i(t) \rightarrow s_{i-1}(t - \Delta t)$$

Besselink & J, 2017

Disturbance String Stability

Platoon dynamics

$$\dot{x}_0 = f(x_0, 0, w_0),$$

 $\dot{x}_i = f(x_i, x_{i-1}, w_i), \quad i \in \mathcal{I}_N \setminus \{0\}$

Definition. The platoon dynamics is disturbance string stable if there exist functions $\bar{\beta} \in \mathcal{KL}$ and $\bar{\sigma} \in \mathcal{K}_{\infty}$ such that, for all $N \in \mathbb{N}$,

$$\sup_{i\in\mathcal{I}_N}|x_i(t)|\leq \bar{\beta}\left(\sup_{i\in\mathcal{I}_N}|x_i(t_0)|,t-t_0\right)+\bar{\sigma}\left(\sup_{i\in\mathcal{I}_N}\|w_i\|_{\infty}^{[t_0,t]}\right)$$

Theorem. Let each vehicle satisfy, for some $\beta \in \mathcal{KL}$, $\gamma, \sigma \in \mathcal{K}_{\infty}$,

$$|x_i(t)| \le \beta(|x_i(t_0)|, t - t_0) + \gamma(||x_{i-1}||_{\infty}^{[t_0,t]}) + \sigma(||w_i||_{\infty}^{[t_0,t]}).$$

If $\gamma(r) \leq \bar{\gamma}r$, $\bar{\gamma} < 1$, then the platoon is disturbance string stable

Besselink & J, 2017

Control objectives

- 1. Track reference $v_{ref}(\cdot)$ and constant time-gap spacing policy
- 2. Achieve disturbance string stability with respect to $v_{ref}(\cdot)$

Timing error with $0 \le \kappa_0 < 1$, $\kappa > 0$ and velocity error e_i

$$\delta_i(s) = (1 - \kappa_0)\Delta_i(s) + \kappa_0\Delta_i^0(s) + \kappa e_i(s)$$

Besselink & J, 2017

Control Design

Timing error with $0 \le \kappa_0 < 1$, $\kappa > 0$

$$\delta_i(s) = (1 - \kappa_0)\Delta_i(s) + \kappa_0\Delta_i^0(s) + \kappa e_i(s)$$

Theorem. For any vehicle controller that achieves, for some functions $\beta_{\delta} \in \mathcal{KL}$, $\sigma_{\delta} \in \mathcal{K}_{\infty}$,

$$|\delta_i(s)| \leq \beta_\delta(|\delta(s_0)|, s-s_0) + \sigma_\delta(\|\bar{w}_i\|_{\infty}^{[s_0,s]}),$$

the platoon is disturbance string stable if $\kappa_0>0$

Properties

- Class of decentralized controllers
- ▶ Definition of the timing error is crucial
- Inclusion of leader information necessary for string stability

Besselink & J, 2017

Cellular Implementation of Platoon Coordinator

- Platoon coordinator generates common velocity reference: $v_i(t) \rightarrow v_{\text{ref}}(s_i(t))$,
- Can be computed in the cellular system
- New handover scheme for moving control computations between base stations

van Dooren et al., 2017

Can truck platooning be used to improve traffic conditions?

- Model truck platoons as bottlenecks moving in car traffic, cf., Lebacque et al. 1998; Delle Monache & Goatin 2014
- Extend Daganzo's cell transmission model to capture evolution of traffic

Discretize the Lighthill-Whitham-Richards PDE model and include truck platoon:

$$\begin{split} \rho_i(t+1) &= \rho_i(t) + \frac{T}{L} \left(q_{i-1}(t) - q_i(t) \right) \\ q_i(t) &= \min \left(V \rho_i(t), V \sigma, W(P - \rho_{i+1}(t)) \right) \end{split}$$

- $ho_i(t)$ traffic density in cell i
- $q_i(t)$ traffic flow from cell i to cell i+1

Lin et al., 2018; Cicic and J, 2018

Bibliography

Available at http://people.kth.se/~kallej/publication.html

Overviews

- A. Keimer, N. Laurent-Brouty, F. Farokhi, H. Signargout, V. Cvetkovic, A. M. Bayen, and K. H. Johansson, Integration of information patterns in the modeling and design of mobility management services. Proceedings of IEEE, 2018.
- B. Besselink, V. Turri, S.H. van de Hoef, K.-Y. Liang, A. Alam, J. Martensson, and K. H. Johansson, Cyber-physical control of road freight transport. Proceedings of IEEE, 104:5, 1128-1141, 2016.
- K.-Y. Liang, S.H. van de Hoef, H. Terelius, V. Turri, B. Besselink, J. Martensson, and K. H. Johansson, Networked control challenges in collaborative road freight transport. European Journal of Control, 30, 2-14, 2016.

Platoon and vehicle controls

- B. Besselink and K. H. Johansson, String stability and a delay-based spacing policy for vehicle platoons subject to disturbances. IEEE Transactions on Automatic Control, 2017.
- V. Turri, B. Besselink, and K. H. Johansson, Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning. IEEE Transactions on Control Systems Technology, 2017.
- V. Turri, B. Besselink, and K. H. Johansson, Gear management for fuel-efficient heavy-duty vehicle platooning, IEEE CDC, Las Vegas, NV, USA, 2016.
- A. Alam, B. Besselink, V. Turri, J. Martensson, and K. H. Johansson, Heavy-duty vehicle platooning for sustainable freight transportation. IEEE Control Systems Magazine, Dec, 35-56, 2015.
- B. Besselink and K. H. Johansson, Control of platoons of heavy-duty vehicles using a delay-based spacing policy, IFAC Workshop on Time Delay Systems, Ann Arbor, MI, USA, 2015.
- A. Alam, J. Martensson, and K. H. Johansson, Experimental evaluation of decentralized cooperative cruise control for heavy-duty vehicle platooning. Control Engineering Practice, 38, 11-25, 2015.
- A. Alam, A. Gattami, K. H. Johansson, and C. J. Tomlin, Guaranteeing safety for heavy duty vehicle platooning: Safe set computations and experimental evaluations. Control Engineering Practice, 24, 33-41, 2014.
- V. Turri, B. Besselink, J. Mårtensson, and K. H. Johansson, Look-ahead control for fuel-efficient heavy-duty vehicle platooning, IEEE CDC, Los Angeles, CA, USA, 2014.

Bibliography (cont'd)

- A. Alam, J. Martensson, and K. H. Johansson, Look-ahead cruise control for heavy duty vehicle platooning, International IEEE Conference on Intelligent Transportation Systems, The Hague, The Netherlands, 2013.
- A. Al Alam, A. Gattami, and K. H. Johansson, An experimental study on the fuel reduction potential of heavy duty vehicle platooning, IEEE ITSC, Madeira Island, 2010.

Platoon formation

- M. Cicic, K.-Y. Liang, and K. H. Johansson, Platoon merging distance prediction using a neural network vehicle speed model, IFAC World Congress, Toulouse, France, 2017.
- K.-Y. Liang, J. Mårtensson, and K. H. Johansson, Heavy-duty vehicle platoon formation for fuel efficiency. IEEE Transactions on Intelligent Transportation Systems, 17:4, 1051-1061, 2016.
- K.-Y. Liang, J. Martensson, and K. H. Johansson, Experiments on platoon formation of heavy trucks in traffic, IEEE ITSC, Rio de Janeiro, Brazil, 2016.
- J.P.J. Koller, A. Grossmann Colin, B. Besselink, and K. H. Johansson, Fuel-efficient control of merging maneuvers for heavy-duty vehicle platooning, IEEE Intelligent Transportation Systems Conference, Las Palmas de Gran Canaria, Spain, 2015.
- K.-Y. Liang, Q. Deng, , J. Martensson, X. Ma, and K. H. Johansson, The influence of traffic on heavy-duty vehicle platoon formation, IEEE Intelligent Vehicles Symposium, Seoul, Korea, 2015.
- K.-Y. Liang, J. Martensson, and K. H. Johansson, When is it fuel efficient for a heavy duty vehicle to catch up with a platoon? IFAC AAC, Tokyo, Japan, 2013.

Platoon assignments and coordination

- S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas, Fuel-efficient en route formation of truck platoons. IEEE Transactions on Intelligent Transportation Systems, 19:1, 102-112, 2018.
- S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas, Efficient dynamic programming solution to a platoon coordination merge problem with stochastic travel times, IFAC World Congress, Toulouse, France, 2017.
- S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas, Computing feasible vehicle platooning opportunities for transport assignments, IFAC Symposium on Control in Transportation Systems, Istanbul, Turkey, 2016.

Bibliography (cont'd)

- S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas, Coordinating truck platooning by clustering pairwise fueloptimal plans, IEEE Intelligent Transportation Systems Conference, Las Palmas de Gran Canaria, Spain, 2015.
- J. Larson, K.-Y. Liang, and K. H. Johansson, A distributed framework for coordinated heavy-duty vehicle platooning. IEEE Transactions on Intelligent Transportation Systems, 16:1, 419-429, 2015.
- S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas, Fuel-optimal centralized coordination of truck-platooning based on shortest paths, American Control Conference, Chicago, IL, USA, 2015.
- K.-Y. Liang, J. Martensson, and K. H. Johansson, Fuel-saving potentials of platooning evaluated through sparse heavy-duty vehicle position data, IEEE Intelligent Vehicles Symposium Dearborn, MI, USA, 2014.
- J. Larson, C. Kammer, K.-Y. Liang, and K. H. Johansson, Coordinated route optimization for heavy-duty vehicle
 platoons, International IEEE Conference on Intelligent Transportation Systems, The Hague, The Netherlands, 20

Economic and logistic consequences

- H. Terelius and K. H. Johansson, On the optimal location of distribution centers for a one-dimensional transportation system, IEEE CDC, Las Vegas, NV, USA, 2016.
- H. Terelius and K. H. Johansson, An efficiency measure for road transportation networks with application to two
 case studies, IEEE CDC, Osaka, Japan, 2015.
- F. Farokhi and K. H. Johansson, A study of truck platooning incentives using a congestion game. IEEE Transactions on Intelligent Transportation Systems, 16:2, 581-595, 2015.
- F. Farokhi, K.-Y. Liang, and K. H. Johansson, Cooperation patterns between fleet owners for transport assignments, IEEE Multi-Conference on Systems and Control, Sydney, Australia, 2015.
- F. Farokhi and K. H. Johansson, Using piecewise-constant congestion taxing policy in repeated routing games, SIAM Conference on Control and Its Applications, Paris, France, 2015.
- F. Farokhi and K. H. Johansson, Investigating the interaction between traffic flow and vehicle platooning using a congestion game, IFAC World Congress, Cape Town, South Africa, 2014.
- F. Farokhi and K. H. Johansson, A game-theoretic framework for studying truck platooning incentives, International IEEE Conference on Intelligent Transportation Systems, The Hague, The Netherlands, 2013.

Bibliography (cont'd)

Road grade estimation

- P. Sahlholm, A. Gattami, and K. H. Johansson, Piecewise linear road grade estimation, SAE World Congress, Detroit, MI, USA, 2011.
- P. Sahlholm and K. H. Johansson, Road grade estimation for look-ahead vehicle control using multiple measurement runs. Control Engineering Practice, 18:11, 1328-1341, 2010.
- P. Sahlholm and K. H. Johansson, Segmented road grade estimation for fuel efficient heavy duty vehicles, IEEE CDC, Atlanta, GA, USA, 2010.
- P. Sahlholm and K. H. Johansson, Road grade estimation for look-ahead vehicle control, IFAC World Congress, Seoul, Korea, 2008.

Controller handover

- D. van Dooren, S. Schiessl, A. Molin, J. Gross, and K. H. Johansson, Safety analysis for controller handover in mobile systems, IFAC World Congress, Toulouse, France, 2017.
- D. van Dooren, G. Fodor, J. Gross, and K. H. Johansson, Performance analysis of controller handover schemes, Manuscript in preparation, 2018

Vehicle platooning impact on traffic

 L. Jin, M. Cicic, S. Amin, and K. H. Johansson, Modeling the impact of vehicle platooning on highway congestion: a fluid queuing approach, ACM Workshop on Hybrid Systems: Computation and Control, Porto, Portugal, 2018