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Operational Energy Impact of Vehicle Automation

Platooning B | s a
Eco-driving
Congestion mitigation
De-emphasized performance -
Improved crash avoidance -
Vehicle right-sizing _
Higher highway speeds -
Increased features -
Travel cost reduction _
New user groups -

Changed mobility services
Infrastructure footprint* I
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The Problem

How to efficiently transport goods over a highway network?

Characteristics

* 2000 000 heavy long-haulage trucks in EU
- 400000 in Germany

* Large distributed control system with no real-time coordination today

* Afew large and many small fleet owners with heterogeneous truck fleets
- 97% operate 20 or fewer trucks in US

* Tight delivery deadlines and high expectations on reliability

Dasueldor?

Goal: Maximize automation and fuel-saving cooperations
with limited intervention in vehicle speed, route, and timing

Marabem

Nomberg

Stargart
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Why focus on fuel and automation?

Life cycle cost for European heavy-duty vehicle

Repair & maintenance
Vehicles 9% Administration
7% Ties

3%

Total fuel cost 80 k€/year/vehicle

Schittler, 2003; Scania, 2012
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The Physics
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Norrby (2014), Liang (2016)

Air Drag Reduction in Truck Platooning
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Vehicle System Architecture

———————— Data bus: CAN

Data from other vehicles i o
:
: Vret
CcC

[
Own position and velocity 7, L] Data | A r BMS
Processing Grof
Pos from vehicle ahead RADAR | CC | GMS

High-level
controllers

CACC - Collaborative adaptive cruise control
ACC - Adaptive cruise control
CC - Cruise control

EMS - Engine management system
BMS - Brake management system
GMS - Gear management system

Alam et al., 2014

Platoon System Architecture
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CACC - Collaborative adaptive cruise control
ACC - Adaptive cruise control
CC - Cruise control

Alam et al., 2014




How to Control Inter-vehicular Spacings?

vehicle / — 1 vehicle i vehicle i + 1

Si — Si+1 Wy

* Limited sensing and inter-vehicle communication
suggests distributed control strategy
* Important to attenuate disturbances: string stability

* Extensively studied problem in ideal environments

— E.g., Levine & Athans (1966), Peppard (1974), loannou & Chien (1993), Swaroop et
al. (1994), Stankovic et al. (2000), Seiler et al. (2004), Naus et al. (2010)

Middleton & Braslavsky, 2010
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Experimental Results
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Spacing Policies

Constant spacing: s.fi(t) = si_1(t) — d

velocity
velocity

time space

Besselink & J, 2017




velocity

Spacing Policies

velocity

time

Besselink & J, 2017

velocity

Spacing Policies

Constant headway: s, (t) = si_1(t) — d — hv;(t)

velocity

time space

Besselink & J, 2017
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Spacing Policies

space

time

Constant time gap: s.f;(t) = si—1(t — At)

vV

velocity
velocity

Spaceé  Besselink & J, 2017

Constant Time Gap Spacing Policy

For the constant time gap policy it holds that

S,'(t) = S,'_1(f.' — At) — V,'(S) = V,'_1(5)

Control objective:  v;(t) — vef(si(t)).
S;(f) — S,'_l(t — Af)

Vref —>{ vehicle i
control

f

vehicle i — 2 vehicle i — 1 vehicle i

Besselink & J, 2017
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Disturbance String Stability

Platoon dynamics

5(0 = f(Xo.O. Wo).
xi = f(xj,xi—1,w;), i€ZIyn\ {0}

Definition. The platoon dynamics is disturbance string stable if
there exist functions 3 € KL and 7 € K, such that, for all N € N,

sup |xi(t)| < 3(sur> Ixi(to)|, t — to) + a(sup ||W,-||l;o-tl>

i€y i€ly i€Ly
Theorem. Let each vehicle satisfy, for some 3 € KL, 7,0 € K.,

Ixi(t)] < B(|xi(to)], t — to) + ¥ (|[xi—1|2) + o (||w;]| ).

If v(r) < 7r, 7 < 1, then the platoon is disturbance string stable

L~ | Besselink & J, 2017

Control objectives
1. Track reference vief(-) and constant time-gap spacing policy

2. Achieve disturbance string stability with respect to v,(-)

Timing error with 0 < kg < 1, x > 0 and velocity error ¢;

3i(s) = (1 — ro)Ai(s) + KoAY(s) + rei(s)

Vref —>  vehicle i
’ control

!

vehicle 0 vehicle / — 1 vehicle i

Besselink & J, 2017
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Vref vehicle i
control

Control Design

vehicle 0 vehicle j — 1 vehicle i
wo wi-1 1 wi
_’% 0 _’% A @%-

| A? l— = = &

Timing error with 0 < kg <1, Kk >0

5i(s) = (1 — Ko)Ai(s) + KoAd(s) + rei(s)
Theorem. For any vehicle controller that achieves, for some
functions 35 € KL, 05 € K,

16i()| < Bs(I5(s0)l, s — s0) + o5 (|| i 121),
the platoon is disturbance string stable if ko > 0
Properties

» Class of decentralized controllers

» Definition of the timing error is crucial

» Inclusion of leader information necessary for string stability

Besselink & J, 2017

Simulations with Platoon Coordinator and
Look-ahead Road Grade Information
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Cellular Implementation of
Platoon Coordinator

« Platoon coordinator generates common
velocity reference: vi(t) — vref(si(t)),

+ Can be computed in the cellular system

« New handover scheme for moving control
computations between base stations
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van Dooren et al., 2017

Controller Code Handover Supporting 1 - . g

Vehicle Platooning A\ N
penlrenion

* Proposed new handover schemes for 5G
* Support real-time control from edge cloud
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Platoon Formation

Predictions on whether it is beneficial

Merge and split vehicle
for a vehicle to catch up another vehicle

platoons on the fly

Solo Driving

Platooning

Solo Driving

Speed [km/h]

Liang et al., 2016

Platoon Formation

Feedback control of merging point based on
real-time vehicle state and traffic information

Traffic and .
. Formation
Vehicle Controller
Predictor

Speed [km/h)

Liang et al., 2016; Cicic et al., 2017
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Platoon Formation Experiments

Fundamental diagram of traffic flow
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* 600 test runs on E4 in Nov 2015
* Traffic measurements from road
units together with onboard sensors

Liang et al., 2016

Catch-up phase Platooning phase Split

minimize Total fuel consumption
V1,02, Up € [vminy Umax]

subject to controlled vehicles dynamics and constraints
traffic dynamics with moving bottlenecks

Traffic dynamics represented by extending the Daganzo (1994)
cell transmission model (CTM) to handle moving bottlenecks

Cicic and J, 2019

9/24/19
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Platoon Formation Optimization

Up

Merge point

Final split point
Catch-up phase X1(Tm) = x2(7) Platooning phase e s een

x1(7r) = x2(77) = X

minimize /Tm (01(7)3 + v2(7)3) dr + d)/fl v,,(T)3dT
0 T™m

v1,v2,Vp
subject to  x1(7m) = x2(7m) Merge point
x1(75) = x2(7f) = x¢ Final split point
V1, V2,Up € ['Umina vmax]
Constraints on vy, v2 and v, due to traffic

* Higher fuel consumption during the catch-up phase

* Lower fuel consumption during the platooning phase

* Merge point depends on velocities during the catch-up phase
* Final split point is fixed to give desired average velocity

Cicic and J, 2019

Numerical Example

Catch-up phase Platooning phase Split

¢ density

Fuel-optimal merge point

Merge point with traffic

Merge point without traffic

0 20 0 60 80 100 120 190 160 180

x[km]

* Slowing down lead vehicle causes heavier traffic for follower vehicle
*  Fuel consumption reduced for proposed controller despite later merging
Cicic and J, 2019
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Persistent Driver Phenomena

Follower HDV
Laead HDV

speed [kan/h]

Vehi

Relative distance

How to incorporate human driver behavior into the design of the automated truck platoon?
Stefansson et al., 2019

Liang et al., 2016

Can truck platooning be used to improve traffic conditions?

*  Model truck platoons as
bottlenecks moving in car traffic,
cf., Lebacque et al. 1998; Delle
Monache & Goatin 2014

* Extend Daganzo’s cell
transmission model to capture
evolution of traffic

Discretize the Lighthill-Whitham-Richards PDE model and include truck platoon:

T ® p;(t) — traffic density in cell 7
pi(t +1) = pi(t) + 7 (q:-1(t) — ai(?)) .
. L ® ¢i(t) — traffic flow from cell 7 to cell i + 1
gi(t) = min (Vp;(t), Vo, W(P — pi11(t)))

Lin et al., 2018; Cicic and J, 2018

9/24/19
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Control truck velocity to dissipate congestion
based on traffic densities

— 0 — P
At P
| raiicjam

Traffic density without truck control Traffic density with truck control

N
|-
=l

Truck trajectory
Cicic and J, 2018

Aggregated actuation from many controlled vehicles

5% controlled vehicles 10% controlled vehicles

0 10 20 30 40
a[km]

What ratio of controlled vehicles are needed for
significant influence on the traffic conditions?

Cicic and J, 2019

9/24/19
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Improvements in travel time and density variations

Total travel time Average total variation
tend N tend N ‘ "
TIT=Y"3 p(t)TL ATV:ZZm‘( ) = pita(t)]
=0 i=1 =0 i=2 fend
— 500
104 - I
- I = 400 l
N &l -
= . - 300} 1|
o= 6 ? = o~ = ‘ {
3 4 | Z 200 .
< : | ' 3} ¥ 8 !
8 5 Z 100 $

0% 3% 5% 10%

0% 3% 5% 10%
Controlled vehicles

Controlled vehicles

Reduced travel times and density variations
already with 3% of controlled vehicles

Cicic and J, 2019

The platoon matching problem

Psﬂk—i 7:15 Start in 7:43 Start in
- Bremerhavn . Hamburg

83 kmyh
80 kmyh
Ay £ 1)

8:55 Platoon Merge

75 kmyh

9:45 Platoon Merge
9:15 Start TS -
in Hanover

Vehicle Platoon

11:03 Platoon Split
WD .
11:32 Platoon Split -
and Arival in Kassed

E 84 kmyh
il
11:53 Arrival at .
Rest Stop 11:44 Arrival
in Eisenach
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Feasibility Study Based on Real Truck Data

Positions sampled every 10 min
Trajectories of 14 trucks

Position snapshot May 14 2013
7 634 Scania trucks
500 000 km? in Europe

7
.
3
s
s
}
e
:
3
<

* 875 long-haulage trucks over European region
* Trucks close in time and space (<r m) could adjust speed
to platoon and then save 10% fuel during platooning

Larson et al., 2013

Conclusions

* Automated road freight transport
— Integrated platoon coordinator and cruise-controller

— Platoon control over V2V and V2| cellular communication
— Automated vehicle match-making and platoon formation

Platoon controller to attenuate disturbances
* Optimization enabled by cellular infrastructure
Control automated platoons to reduce congestion

* Ongoing work
— Global vs local objectives: pricing, social optimum, data privacy

— Integrating human behavior in automated platoon control
ENSEMBLE multi-brand platooning H2020 project 2018

e

people.kth.se/~kallej

B. Besselink et al., Cyber-physical control of road freight transport. Proceedings of IEEE, 104:5, 1128-1141, 2016.
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