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Motivation

Social interactions

• Adoption of innovations, behaviors

• Opinion formation

• Social learning

Economic interactions

• Public good provision

• Competition among firms

• Financial trades

In many social and economic settings, decisions of individuals are affected
more by the actions of their friends, colleagues, peers and competitors.
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Network game model

Consider a network game defined by:

- N agents

- interacting over a network G ∈ RN×N{
Gij ≥ 0 influence of j on i

Gii = 0 no self loops

J1(x1, z1(x))

J3(x3, z3(x))

J2(x2, z2(x))

Each agent i aims at minimizing its cost function

• strategy: x i ∈ Rn

• feasible set: X i ⊂ Rn

• cost: J i (x i , z i (x)) : Rn × Rn → R
• aggregate: z i (x) := 1

N

∑N
j=1 Gijx

j

Standing assumption

- X i ⊂ Rn compact and convex;

- J i (x i , z i (x)) strongly convex in x i , for all x−i ∈ X−i ;

- J i (x i , z i ) ∈ C2 in [x i ; z i ].
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Linear quadratic network games

• Each agent chooses an action x i ≥ 0 ...

→ how much effort exerted on an activity
(e.g. education, smoking, public goods)

• Agent i cost function:

J i (x i , z i (x)) =
1

2
(x i )2 − aix i︸ ︷︷ ︸
cost isolation

−K · z i (x) x i︸ ︷︷ ︸
network effects

• aggregate: z i (x) = 1
N

∑
j 6=i Gijx

j

• K determines how much neighbor actions affect agent’s payoff.
(K > 0 strategic complements; K < 0 strategic substitutes)

A set of strategies {x̄ i}Ni=1 is a Nash equilibrium if for each player i ,

J i
(
x̄ i , z i (x̄)

)
≤ J i

(
x i , z i (x̄

)
, for all x i ∈ X i .
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Literature and main question

What is the impact of network structure on equilibrium outcome?

- How does individual network position determine individual play?

Ballester et al. (2006); Bramoullé and Kranton (2007); Bramoullé et al.
(2014); Belhaj et al. (2014); Jackson and Zenou (2014); Acemoglu et al.
(2015); Allouch (2015); Melo (2017); Parise and Ozdaglar (2018)

- How does a central planner target interventions?

• Ballester et al. (2006): key-player removal in crime applications
• Candogan et al. (2012): optimal pricing for monopolist
• Galeotti et al. (2017): budget allocation in network games

↪→ require exact network information

Applications where network is large, changing over time or multiple networks

Can we regulate strategic behavior by using only statistical information
about network interactions?
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A statistical framework for network games

Stochastic Network Formation Process

complete
information

network
game

Stochastic Network Formation Process

G G0 G00

x̄ x̄0 x̄00

Sampled network game = game over a sampled network

- Related work on distribution of centrality measures:
Dasaratha (2017), Avella-Medina, Parise, Schaub, and Segarra (2018)
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Graphons as stochastic network formation processes

Graphons -[Lovász, 2012]

A symmetric measurable function W : [0, 1]2 → [0, 1]

0 
1 

0 

1 s

t

1) Limit of graph: W (s, t) = interaction s, t ∈ [0, 1]

!

N = 5 N = 10 N = 20 N = 1
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Graphons as stochastic network formation processes

Graphons -[Lovász, 2012]

A symmetric measurable function W : [0, 1]2 → [0, 1]
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2) Random graph model:
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Generalize parametric models such as Erdos-Renyi, Stochastic Block model
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Graphons as stochastic network formation processes

Graphons -[Lovász, 2012]

A symmetric measurable function W : [0, 1]2 → [0, 1]

0 
1 

0 

1 s

t

- Theory:
[Lovász, Szegedy, 2006], [Lovász, 2012], [Borgs et al., 2008]

- Applications:

• community detection [Eldridge et al., 2016],
• crowd-sourcing [Lee and Shah, 2017],
• signal processing [Morency and Leus, 2017],
• optimal control of dynamical systems [Gao and Caines, 2017]
• graphon mean field games: [Caines and Huang, 2018]
• . . .

- Key idea of this work:

combine network game theory with graphon theory
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Illustration for a SBM
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1
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x̄i

agent agentagent

Questions:

1. How close are Nash equilibria in different sampled network games?

2. Will the Nash equilibria converge to a deterministic profile for N
large?

3. Can we exploit this property to design robust interventions for
sampled network games?
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Talk outline
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Step 1 Define graphon games for infinite populations
• define equilibrium
• existence, uniqueness and sensitivity

Step 2 Relate infinite graphon games to sampled network games
• reformulate a network games as a step-function graphon game
• relate equilibria of graphon games & sampled network games

(bound the distance in terms on the population size)

Step 3 Design interventions for sampled network games based on graphon model

Step 4 Incomplete information in sampled network games
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Step 1:
Infinite population
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Network versus graphon games

- Agents:

- Interactions:

- Strategy:

- Cost function:

- Aggregate:

Network games

i ∈ {1, . . . ,N}
G ∈ RN×N

x i ∈ X i

J(x i , z i )

z i (x) := 1
N

∑N
j=1 Gijx

j

Graphon games

s ∈ [0, 1]

W : [0, 1]2 → [0, 1]

x(s) ∈ X (s)

J(x(s), z(s | x))

z(s | x) :=
∫ 1

0
W (s, t)x(t)dt

Remarks:

• Agents are a continuum in [0, 1] (non-atomic)

• W (s, t) represents the interaction among the non-atomic agents s and t

• The agents cost function is the same in network and in graphon games

• A strategy profile is a function x : [0, 1]→ X

10 / 31



Network versus graphon games

- Agents:

- Interactions:

- Strategy:

- Cost function:

- Aggregate:

Network games

i ∈ {1, . . . ,N}
G ∈ RN×N

x i ∈ X i

J(x i , z i )

z i (x) := 1
N

∑N
j=1 Gijx

j

Graphon games

s ∈ [0, 1]

W : [0, 1]2 → [0, 1]

x(s) ∈ X (s)

J(x(s), z(s | x))

z(s | x) :=
∫ 1

0
W (s, t)x(t)dt

Definition: Nash equilibrium

A function x̄(s) ∈ X (s) is a Nash equilibrium if for all s ∈ [0, 1]

J(x̄(s), z(s | x̄)) ≤ J(x̃ , z(s | x̄)) for all x̃ ∈ X (s)

Similarity with Wardrop equilibrium for non-atomic congestion games
[Wardrop, 1900], [Smith, 1979]
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Network versus graphon games

- Agents:

- Interactions:

- Strategy:

- Cost function:

- Aggregate:

Network games

i ∈ {1, . . . ,N}
G ∈ RN×N

x i ∈ X i

J(x i , z i )

z i (x) := 1
N

∑N
j=1 Gijx

j

Graphon games

s ∈ [0, 1]

W : [0, 1]2 → [0, 1]

x(s) ∈ X (s)

J(x(s), z(s | x))

z(s | x) :=
∫ 1

0
W (s, t)x(t)dt

Definition: Nash equilibrium

A function x̄(s) ∈ X (s) is a Nash equilibrium if for all s ∈ [0, 1]

J(x̄(s), z(s | x̄)) ≤ J(x̃ , z(s | x̄)) for all x̃ ∈ X (s)

Does a Nash equilibrium exist? Is it unique?
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The graphon operator

Adjacency matrix

G ∈ RN×N

v 7→ Gv

Gv = λv

Graphon operator

W : L2([0, 1]) 7→ L2([0, 1])

f 7→ (Wf )(s) =
∫ 1

0
W (s, t)f (t)dt.

(Wf )(s) = λf (s)

Properties of W - [Lovász, 2012]

1. W is a linear, continuous, bounded operator;

2. all the eigenvalues of W are real;

3. |||W||| := supf∈L2([0,1]),‖f ‖L=1 ‖Wf ‖L = λmax(W).
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An example

Consider an infinite population of
agents which are spatially located
along a line (e.g. a street).

• s ∈ [0, 1] = position along line

• influence between agents is a
decreasing function of
the spatial distance

• central agents are affected
more

minmax graphon

s

s

s

t

t

t

s
t

W (s, t) = min(s, t)(1−max(s, t))

Spectral properties:

λh :=
1

π2h2
, ψh(s) :=

√
2 sin(hπs) ∀h ∈ {1, 2, . . .∞}

W has an infinite, but countable, number of nonzero eigenvalues, with an
accumulation point at zero. Moreover, λmax(W) = 1

π2 .
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Reformulation as fixed point of the best response mapping

Nash equilibrium

x̄(s) = arg min
x̃∈X (s)

J(x̃ , z(s | x̄))

• consider a fixed strategy profile x(s)
• the corresponding local aggregate function is

zx(s) := z(s | x) =

∫ 1

0

W (s, t)x(t)dt = (Wx)(s)

• Define the best response operator B

(Bz)(s) := arg min
x̃∈X(s)

J(x̃ , z(s)),

• the best response mapping is

x 7→ Bzx = BWx

Lemma - Equivalent characterization

x̄ is a Nash equilibrium iff it is a fixed point of the game operator BW, i.e.

x̄ = BWx̄ .
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Existence and uniqueness

Assumption on cost and strategy sets

• J(x , z) is C1 and strongly convex in x uniformly in z (constant µJ)

∇xJ(x , z) is Lipschitz in z uniformly in x (constant `J)

• X(s) convex and closed ∀s ∈ [0, 1], ∃ X compact s.t. X(s) ⊆ X , ∀s.

Proof idea: prove that BW is a contraction

1. prove that B is Lipschitz

‖Bz1 − Bz2‖L2 ≤ `J
µJ
‖z1 − z2‖L2

2. combining with W we get

‖BWx1 − BWx2‖L2 ≤ `J
µJ
‖Wx1 −Wx2‖L2 =

`J
µJ
‖W(x1 − x2)‖L2

≤ `J
µJ
|||W|||‖x1 − x2‖L2 =

`J
µJ
λmax(W)‖x1 − x2‖L2

3. apply Banach fixed point theorem

Theorem
`J
µJ
λmax(W) < 1 ⇒ existence and uniqueness
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Linear quadratic graphon games

J(x i , z i ) =
1

2
(x i )2 − x i [Kz i + a]

• a Nash equilibrium exists and is unique if

`J
µJ
λmax(W) < 1 ⇔ K <

1

λmax(W)

→ compare with: [Ballester et al., 2006], [Jackson and Zenou, 2014]

• for game of strategic complements (K > 0) equilibrium is proportional to
Bonacich centrality

x̄(s) = a((I− KW)−11[0,1])(s)

→ centrality measures for graphons:

[Avella-Medina, Parise, Schaub, Segarra. 2017]
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Example - cont’d

J(x i , z i ) =
1

2
(x i )2 − x i [Kz i + a]

• Use minmax graphon and recall λmax(W) = 1
π2

• Set K = 0.5 (for uniqueness).

K=0.5
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Comparative statics

How does the equilibrium change if the graphon changes from W to W̃?

Theorem

Let xmax := maxx∈X ‖x‖. Then under the previous assumptions

‖x̄ − x̃‖L2 ≤ `J/µJxmax

1− `J/µJλmax(W)

∣∣∣∣∣∣∣∣∣W− W̃
∣∣∣∣∣∣∣∣∣

Proof idea:

‖x̄ − x̃‖L2 = ‖BWx̄ − BW̃x̃‖L2 ≤ `J
µJ
‖Wx̄ − W̃x̃‖L2

≤ `J
µJ
‖Wx̄−Wx̃‖L2 +

`J
µJ
‖Wx̃ − W̃x̃‖L2

≤ `J
µJ
|||W|||‖x̄ − x̃‖L2 +

`J
µJ

∣∣∣∣∣∣∣∣∣W− W̃
∣∣∣∣∣∣∣∣∣‖x̃‖L2
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Step 2:
finite population
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Step 2: Relation sample network and graphon game

Theorem: Nash equilibrium distance

Suppose that W is Lipschitz continuous and fix any tolerance δ � 1.

With probability at least 1− 2δ

‖x̄ [N] − x̄‖L2 ≤ K

√
log(N/δ)

N

Proof idea:
• map any finite network game to a graphon game with

G12

U1

U1

U2

U2 U3

U3

U4

U4 U5

U5

s̄2

U1 U2 U3 U4 U5

3 

2 

1 

4 

5 

x1x2

x2

x3

x3
x4

x4

x5

x5

x1

piece-wise constant
graphon W [N]

• relate equilibria distance to graphon operator distance:

‖x̄ [N] − x̄‖L2 ≤ K̃1

∣∣∣∣∣∣∣∣∣W[N] −W
∣∣∣∣∣∣∣∣∣

• bound the graphon operator distance (improvement on [Lovász, 2012]):∣∣∣∣∣∣∣∣∣W[N] −W
∣∣∣∣∣∣∣∣∣ ≤ K̃2

√
log(N/δ)

N
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Example - cont’d

Use minmax graphon and recall λmax(W) = 1
π2 . Set α = 0.5 (for uniqueness).
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Games with complements: =0.5

• Plot the equilibrium in sampled network games for N = 10, 50, 200, 2000

• Plot expected distance over 100 realizations
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Step 3:
Interventions
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Welfare maximization in LQ network games

J(x i , z i ) =
1

2
(x i )2 − x i [Kz i + ai ], K > 0

This could model for example peer pressure in education: Calvó-Armengol,

Patacchini, Zenou (2009)

• x i = student effort
• K = level of peer pressure
• ai = effort in isolation

Per-capita welfare maximization problem - Galeotti et al., (2017):

max
β∈RN

T
[N]
β := − 1

N

∑N
i=1 J(x̄ i , z̄ i | β i )

s.t.
∑N

i=1(β i )2 ≤ C [N],

Network heuristic

β
[N]
nh :=

√
C [N]v

[N]
1

where v
[N]
1 is the dominant

eigenvector of G [N]

Graphon heuristic

[β
[N]
gh ]i := κ[N] · ψ1(si ),

where ψ1 is the dominant
eigenfunction of W
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Performance of the graphon heuristic

Theorem

If further λ1(W) > λ2(W) and C [N] = O(N), with probability 1− 2δ

|T [N]
nh − T

[N]
gh | = O

(√
log(N/δ)

N

)
.

Proof idea:

• i) T [N] = 1
2N
‖x̄ [N]‖2 and ii) x̄ [N] = [I − αG [N]

N
]−1(a + β)

|T [N]
nh − T

[N]
gh | ≤

√
C [N] + a

√
N

N

1

(1− ηKλ1(W))2
‖β[N]

nh − β
[N]
gh ‖

≈
√
C [N] + a

√
N

N

√
C [N]

(1− ηKλ1(W))2
‖ϕ[N]

1 − ϕ1‖L2

• By Davis-Kahan theorem

‖ ϕ
[N]
1︸︷︷︸

rel. to W[N]

− ϕ1︸︷︷︸
rel. to W

‖L2 ≤
2
√

2
∣∣∣∣∣∣∣∣∣W[N] −W

∣∣∣∣∣∣∣∣∣
λ1(W)− λ2(W)

= O

(√
log(N/δ)

N

)

23 / 31



The community model

SBM model

• generalize to K communities

• each agent belongs to
community k with probability wk

• agents in community l , k
connect with probability ql,k

(e.g. Currarini et al. (2009) community= students of different race)

How to compute the dominant eigenfunction?

• Let D := diag([wk ]) ∈ R4×4

• Let Q := [ql,k] ∈ R4×4

• Let v1 dominant eigenvector of QD ∈ R4×4

• Then ψ1(s) is piece-wise constant with values given by v1
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The community model - cont’d

The graphon heuristic is much simpler to implement
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Step 4:
Incomplete information
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Incomplete information in sampled network games

An incomplete information sampled network game G in(X, J,W ) is a game

• with a random number N of agents

• with types {t i}Ni=1 sampled i.i.d from U [0, 1]

• interacting according to a network G [N] sampled from the graphon W

• each agent i has information about: W , t i , X and J

• while is uninformed about G [N] and the other agents types t−i
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Symmetric Bayesian Nash equilibrium

• Suppose agent of type s play b(s) (symmetric case)

• The expected cost of an agent of type t i = s playing x(s) ∈ X(s) is

Jexp(x(s) | b) = EN,t−i ,links

J
x(s),

1

N − 1

∑
j 6=i

[G [N]]ijb(t j)


Symmetric Bayesian Nash equilibrium

b(s) ∈ X(s) is a symmetric ε-Bayesian Nash equilibrium if for all s ∈ [0, 1]

Jexp(b(s) | b) ≤ Jexp(x̃ | b) + ε for all x̃ ∈ X(s).

Symmetric Bayesian Nash eq. are strictly related to graphon Nash eq.
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Linear quadratic games

Theorem

x̄ is a Nash equilibrium of G(X, J,W ) iff it is a symmetric Bayesian Nash
equilibrium of G in(X, J,W ).

Proof idea:

• x̄ Graphon equilibrium iff J(x̄(s), z̄(s)) ≤ J(x̃, z̄(s)), ∀x̃ , s

z̄(s) =
∫ 1

0
W (s, t)x̄(t)dt

• Fix b = x̄ , by linearity in aggregate: Jexp(x(s) | x̄) = J(x(s), zexp(s)) where

zexp(s) := EN,t−i ,links

[
1

N−1

∑
j [G

[N]]ij x̄(t j)
]

x̄ Bayesian equilibrium iff J(x̄(s), zexp(s)) ≤ J(x̃, zexp(s)), ∀x̃ , s.

• Conclusion follows from zexp(s) = z̄(s)

zexp(s) = ENEt−i |NE links|t−i ,N

[
1

N−1

∑
j 6=i [G

[N]]ij x̄(t j )
]

= ENEt−i |N

[
1

N−1

∑
j 6=i W (s, t j )x̄(t j )

]
= EN

1
N−1

∑
j 6=i Et j

[
W (s, t j )x̄(t j )

]
= EN

1
N−1

∑
j 6=i

∫ 1
0 W (s, t)x̄(t)dt = EN

1
N−1

∑
j 6=i z̄(s) = ENz̄(s) = z̄(s)
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Generalization to Lipschitz cost

Theorem

Further suppose that

• J(x , z) is Lipschitz continuous in z uniformly over x

• agents know that N ≥ Nmin

The Nash equilibrium of G(X, J,W ) is a symmetric ε-Bayesian Nash equi-
librium with

ε = O

(√
log(Nmin)

Nmin

)
.

Proof idea:

• For general cost

Jexp(x(s) | x̄) = EN,t−i ,links

[
J
(
x(s), 1

N−1

∑
j [G

[N]]ij x̄(t j)
)]
6= J (x(s), zexp(s))

= Eζx̄ (s) [J (x(s), ζx̄(s))]

• Prove that ζx̄(s) concentrates around zexp(s) for N large

• Use Lipschitz condition to show that

Jexp(x(s) | x̄) ≈ J (x(s), zexp(s)) = J (x(s), z̄(s))
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Summary

• Define graphon games and study equilibrium properties

• Graphon equilibrium is a good approximation for sampled network games

• Shown how to design robust interventions using graphon model

• Foundation for graphon equilibrium in incomplete information games
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