Towards a Theory of Scalable Control

Anders Rantzer Towards a Theory of Scalable Control

New Generation of Heating Networks

New Generation of Heating Networks

LUNDS NYA STADSDEL BRUNNSHÖG 23 september 2019 12:12

Lund först i världen med ljummen fjärrvärme

Kranen öppnas på tisdag. Brunnshög blir den första stadsdelen i världen som får ett lågvärmenät. Vattnet är tjugo grader kallare än i det vanliga fjärrvärmenätet. Men vad ska det vara bra för?

Anders Rantzer Towards a Theory of Scalable Control

Fossil Free Sweden 2045 !

Anders Rantzer Towards a Theory of Scalable Control

Towards a Scalable Theory of Control

Background

Books on large-scale control and coordination:

Mesarovic, Macko, Takahara (1970) Singh, Titli (1978) Findeisen (1980)

Optimization of structured controllers:

Spatially invariant systems: Bamieh, Paganini, Dahleh (2002) Distributed controllers: D'Andrea and Dullerud (2003) Quadratic invariance: Rotkowitz and Lall (2002) Low rank coordination: Madjidian and Mirkin (2014) Scalability using positivity: Rantzer (2015) Systems Level Synthesis: Wang, Matni, Doyle (2018)

Anders Rantzer Towards a Theory of Scalable Control

Three Widespread Myths

Three widespread myths

- Scalable controllers are hard to optimize
- H_{∞} optimal controllers are not scalable
- H_2 optimal controllers are not scalable

They are all wrong!

Three Widespread Myths

Three widespread myths

- Scalable controllers are hard to optimize
- H_∞ optimal controllers are not scalable
- H_2 optimal controllers are not scalable

Anders Rantzer Towards a Theory of Scalable Control

Outline

- Network realizable control (Systems Level Synthesis)
 - Don't look for sparse transfer functions
 - Connection to Internal Model Control
- Scalable H_{∞} optimal synthesis
 - H_∞ optimal static controllers
 - $-~H_\infty$ optimal dynamic controllers
- Scalable H_2 optimal synthesis
 - a transportation example
- Concluding remarks

Example: River Dams

Consider a model of three water dams along a river:

$$\begin{aligned} x_1(t+1) &= 0.9x_1(t) - u_1(t) \\ x_2(t+1) &= 0.1x_1(t) + 0.8x_2(t) + u_1(t) - u_2(t) \\ x_3(t+1) &= 0.2x_2(t) + 0.7x_3(t) + u_2(t) - u_3(t) \end{aligned}$$

Information propagates downstream.

The transfer function from (u_1, u_2, u_3) to (x_1, x_2, x_3) is triangular:

 $\mathbf{P}(z) = \begin{bmatrix} * & 0 & 0 \\ * & 5 & * \\ * & * & * \end{bmatrix}$

The localized structure of the state realization is lost in the transfer matrix.

Anders Rantzer Towards a Theory of Scalable Control

Closed Loop Convexity

In general, specifications are computationally tractable only if they are convex constraints on the closed loop map

 $C(I + PC)^{-1}$.

Sparsity constraints on the matrix ${f C}$ are not closed loop convex and very difficult to enforce.

However, there is a better choice...

Example: River Dams

Consider a model of three water dams along a river:

 $\begin{aligned} x_1(t+1) &= 0.9x_1(t) - u_1(t) \\ x_2(t+1) &= 0.1x_1(t) + 0.8x_2(t) + u_1(t) - u_2(t) \\ x_3(t+1) &= 0.2x_2(t) + 0.7x_3(t) + u_2(t) - u_3(t) \end{aligned}$

Information propagates downstream.

The transfer function from (u_1, u_2, u_3) to (x_1, x_2, x_3) is triangular:

 $\mathbf{P}(z) = \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & * & * \end{bmatrix}$

The localized structure of the state realization is lost in the transfer matrix.

Anders Rantzer Towards a Theory of Scalable Control

Closed Loop Convexity

In general, specifications are computationally tractable only if they are convex constraints on the closed loop map

 $\mathbf{C}(I + \mathbf{P}\mathbf{C})^{-1}.$

Sparsity constraints on the matrix ${\boldsymbol{C}}$ are not closed loop convex and very difficult to enforce.

lowever, there is a better choice.

Closed Loop Convexity

In general, specifications are computationally tractable only if they are convex constraints on the closed loop map

$$\mathbf{C}(I + \mathbf{P}\mathbf{C})^{-1}.$$

Sparsity constraints on the matrix ${\boldsymbol{C}}$ are not closed loop convex and very difficult to enforce.

However, there is a better choice...

Anders Rantzer Towards a Theory of Scalable Control

Network Realizability is a Closed Loop Convex Property!

Theorem 1

Network Realizability is preserved by addition and proper inversion! If G_1 and G_2 are stable and network realizable, then so is G_1G_2 .

The proof is straightforward For example, if $\mathbf{G}(z) = C(zI - A)^{-1}B + D$ and D is invertible, then \mathbf{G}^{-1} has the realization

$$\begin{bmatrix} A - BD^{-1}C & BD^{-1} \\ -D^{-1}C & 6 & D^{-1} \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} BD^{-1} & BD^{-1} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} BD^{-1} & BD^{-1}$$

Network Realizability

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, a transfer matrix **G** is said to be *network realizable on* \mathcal{G} if it has a stabilizable and detectable realization $\mathbf{G}(z) = C(zI - A)^{-1}B + D$ with

$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} = \begin{bmatrix} A_{11} & \dots & A_{1N} & B_1 & 0 \\ \vdots & & \vdots & & \ddots \\ A_{N1} & \dots & A_{NN} & 0 & B_N \\ \hline C_{11} & \dots & C_{1n} & D_1 & 0 \\ \vdots & & \vdots & & \ddots \\ C_{N1} & \dots & C_{NN} & 0 & D_N \end{bmatrix}$$

where
$$A_{ij} = 0$$
 and $C_{ij} = 0$ for $(i, j) \notin \mathcal{E}$.

Anders Rantzer Towards a Theory of Scalable Control

Network Realizability is a Closed Loop Convex Property!

Theorem 1

Network Realizability is preserved by addition and proper inversion! If G_1 and G_2 are stable and network realizable, then so is G_1G_2 .

The proof is straightforward

For example, if ${f G}(z)=C(zI-A)^{-1}B+D$ and D is invertible, then ${f G}^{-1}$ has the realization

$$\left[\begin{array}{c|c} A-BD^{-1}C & BD^{-1}\\ \hline -D^{-1}C & D^{-1} \end{array}\right].$$

Network Realizable Control of Stable Plants

Theorem 2

Suppose that the transfer matrix **P** is strictly proper, stable and network realizable on \mathcal{G} . Then, the controller **C** is stabilizing and network realizable if and only if $\mathbf{Q} = \mathbf{C}(I + \mathbf{PC})^{-1}$ is stable and network realizable.

Enforcing network realizability of **Q** can be done by convex optimization. But how do we construct a realization of **C** after optimizing **Q**?

Anders Rantzer Towards a Theory of Scalable Control

Internal Model Control (IMC)

[Garcia/Morari, 1982]

If both \mathbf{P} and \mathbf{Q} have network realizations on a given graph, then after proper ordering of the states and block partitioning of the matrices also the IMC controller will be a network realization on that graph.

Network Realizable Control of Stable Plants

Theorem 2

Suppose that the transfer matrix **P** is strictly proper, stable and network realizable on \mathcal{G} . Then, the controller **C** is stabilizing and network realizable if and only if $\mathbf{Q} = \mathbf{C}(I + \mathbf{PC})^{-1}$ is stable and network realizable.

Enforcing network realizability of \mathbf{Q} can be done by convex optimization. But how do we construct a realization of \mathbf{C} after optimizing \mathbf{Q} ?

Anders Rantzer Towards a Theory of Scalable Control

Example: River Dams

$$\begin{bmatrix} x_1^+ \\ x_2^+ \\ x_3^+ \end{bmatrix} = \begin{bmatrix} 0.9 & 0 & 0 \\ 0.1 & 0.8 & 0 \\ 0 & 0.2 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} -u_1 \\ u_1 - u_2 \\ u_2 - u_3 \end{bmatrix}$$

Let $\mathbf{Q}(z) = E(zI - A)^{-1}F$ be the desired map from reference to input:

[E ₁₁	0	0	F_1	0	0
E_{21}	E_{22}	0	0	F_2	0
0	E_{32}	E_{33}	0	0	F_3
G_1	0	-0-	-0	0	0
0	G_2	60	0	0	0
[00]	0	G_3	0	0	0

Example: River Dams

Then the controller $\mathbf{C} = \mathbf{Q}(I - \mathbf{P}\mathbf{Q})^{-1}$ has the realization

$[\hat{x}_{1}^{+}]$		0.9	$-G_1$	0	0	0	0	14	\hat{x}_1		[0]	
ξ_1^+	+	F_1	E_{11}	0	0	0	0		ξ_1		e_1	
\hat{x}_{2}^{+}		0.1	G_1	0.8	$-G_2$	0	0		\hat{x}_2		0	
ξ_2^+	-	0	E_{21}	F_2	E_{22}	0	0		ξ_2	_	e_2	•
\hat{x}_{3}^{+}		0	0	0.2	G_2	0.7	$-G_3$	74	\hat{x}_3		0	
ξ_3^+			0	0	E_{32}	F_3	E_{33}	11	ξ_3		e_3	

Anders Rantzer Towards a Theory of Scalable Control

Internal Model Control (IMC)

Design stable Q(s) to make also Q(s)P(s) stable!

Internal Model Control (IMC)

Network Realizability is a Closed Loop Convex Property!

Theorem 3

Consider ${f P}$ and ${f C}$ such that ${f P}$ is strictly proper and define the closed loop

$$\mathbf{H} = \begin{bmatrix} I & -\mathbf{P} \\ \mathbf{C} & I \end{bmatrix}^{-1} = \begin{bmatrix} (I + \mathbf{PC})^{-1} & \mathbf{P}(I + \mathbf{CP})^{-1} \\ -\mathbf{C}(I + \mathbf{PC})^{-1} & (I + \mathbf{CP})^{-1} \end{bmatrix}.$$

Then the following two statements are equivalent:

- (*i*) Both **P** and **C** are network realizable on \mathcal{G} .
- (*ii*) **H** is network realizable on \mathcal{G} .

The following two statements are also equivalent:

- (*iii*) Both **PC** and **C** are network realizable on \mathcal{G} .
- (*iv*) Both $(I + \mathbf{PC})^{-1}$ and $\mathbf{C}(I + \mathbf{PC})^{-1}$ are network realizable on \mathcal{G} .

Outline

- Network realizable control
 - Don't look for sparse transfer functions
 - Connection to Internal Model Control
- Scalable H_∞ optimal synthesis
 - $\,H_{\infty}$ optimal static controllers
 - $-~H_\infty$ optimal dynamic controllers
- Scalable H_2 optimal synthesis
 - a transportation example
- Concluding remarks

Dynamic Buffer Networks

- Producers, consumers and storages
- Examples: water, power, traffic, data
- Discrete/continuous, stochastic/deterministic
- Multiple commodities, human interaction

Anders Rantzer Towards a Theory of Scalable Control

Scalable Synthesis for Dynamic Buffer Networks

Anders Rantzer Towards a Theory of Scalable Control

A common approach is to just focus on stationary optimality or equilibrium conditions and ignore dynamics. ("No arbitrage")

When is this justified for a control system?

H_∞ Optimal Static Control on Networks

Problem:

Given a graph $(\mathcal{V}, \mathcal{E})$ and

$$\dot{x_i} = a_i x_i + \sum_{(i,j) \in \mathcal{E}} (u_{ij} - u_{ji}) + w_i \qquad i \in \mathcal{V}$$

find control law u = Kx that minimizes the H_{∞} norm of the map from w to (x, u).

Solution: An optimal control law when $a_i < 0$ is given by

$$u_{ij} = x_i/a_i - x_j/a_j^{0} \quad 0 \quad (i,j) \in \mathcal{E}$$

[Lidström/Rantzer, ACC2016]

H_∞ Optimal Static Control on Networks

Problem:

Given a graph $(\mathcal{V}, \mathcal{E})$ and

$$\dot{x_i} = a_i x_i + \sum_{(i,j) \in \mathcal{E}} (u_{ij} - u_{ji}) + w_i \qquad i \in \mathcal{V}$$

find control law u = Kx that minimizes the H_{∞} norm of the map from w to (x, u).

Solution:

An optimal control law when $a_i < 0$ is given by

$$u_{ij} = x_i/a_i - x_j/a_j \qquad (i, j) \in \mathcal{E}.$$

[Lidström/Rantzer, ACC2016]

Anders Rantzer Towards a Theory of Scalable Control

Structure Preserving Static Feedback

Problem

Consider the system $\dot{x} = Ax + Bu + w$ with A symmetric and Hurwitz. Find a state feedback controller u = Kx that minimizes the H_{∞} norm of the map from w to (x, u) in the closed loop system $\dot{x} = (A + BK)x + w$.

Theorem

A solution is given by $u = K_* x$ where $K_* = B^T A^{-1}$. The minimal value of the norm is $\sqrt{\|(A^2 + BB^T)^{-1}\|}$.

Proof idea

 $K_* = B^T A^{-1}$ minimizes the static gain. Other frequencies are better off.

Example

$$\dot{x} = \underbrace{-\text{diag}(1, 3, 2)}_{A} x + \underbrace{\begin{bmatrix} -1 & 0 & 0\\ 1 & 1 & -1\\ 0 & 0 & 1 \end{bmatrix}}_{B} u + w$$

Find controller u = Kx that minimizes the H_{∞} gain from w to (x, u). The Riccati solution gives

$$K_1 = \begin{bmatrix} 0.93 & -0.11 & 0.00 \\ -0.05 & -0.17 & -0.01 \\ 0.04 & 0.16 & -0.26 \end{bmatrix}$$

Our theorem gives another optimal solution:

$$K_2 = egin{bmatrix} 1 & -rac{1}{3} & 0 \ 0 & -rac{1}{3} & 0 \ 0 & rac{1}{3} & -rac{1}{2} \end{bmatrix}$$

Anders Rantzer Towards a Theory of Scalable Control

Structure Preserving Static Feedback

Problem

Consider the system $\dot{x} = Ax + Bu + w$ with A symmetric and Hurwitz. Find a state feedback controller u = Kx that minimizes the H_{∞} norm of the map from w to (x, u) in the closed loop system $\dot{x} = (A + BK)x + w$.

Theorem

A solution is given by $u = K_* x$ where $K_* = B^T A^{-1}$. The minimal value of the norm is $\sqrt{\|(A^2 + BB^T)^{-1}\|}$.

Proof idea

 $K_* = B^T A^{-1}$ minimizes the static gain. Other frequencies are better off.

Outline

- Network realizable control
 - Don't look for sparse transfer functions
 - Connection to Internal Model Control
- Scalable H_∞ optimal synthesis
 - H_∞ optimal static controllers
 - H_∞ optimal dynamic controllers
- Scalable H_2 optimal synthesis
 - a transportation example
- Concluding remarks

Anders Rantzer Towards a Theory of Scalable Control

Structure Preserving H_∞ Control

Theorem

Let $P(s) = (sI - A)^{-1}B$ with A symmetric negative definite. The problem

Minimize
$$\|(I + KP)^{-1} K\|_{\infty}$$

subject to $\|\frac{1}{s}P(I + KP)^{-1}\|_{\infty} \le \tau$
 K stabilizing

is solved by

$$\widehat{K}(s) = rac{\|(A^{-1}B)^\dagger\|}{ au} \left(B^TA^{-2} - rac{1}{s}B^TA^{-1}
ight)$$

provided that $au \geq \sqrt{\|B^T A^{-4} B\|}$.

Frequency Weighted Specifications

Disturbance rejection:

The transfer functions $(I + PK)^{-1}$ and $(I + PK)^{-1}P$ should be small for low frequencies. ("Integral action")

Measurement errors:

The transfer functions $K(I + PK)^{-1}$ and $PK(I + PK)^{-1}$ should be small for high frequencies.

Anders Rantzer Towards a Theory of Scalable Control

Optimal Network Control with Edge Integrators

Given a graph $(\mathcal{V}, \mathcal{E})$, let P(s) be the transfer matrix from u to x given by $\dot{x}_i = a_i x_i + \sum_{(i,j) \in \mathcal{E}} (u_{ij} - u_{ji}), i \in \mathcal{V}$ with $a_i < 0$. Then $\widehat{K}(s)$ is a separate PI controller for each graph edge:

$$egin{cases} \dot{z}_{ij} = k(x_i/a_i - x_j/a_j) \ u_{ij} = z_{ij} - x_i/a_i^2 + x_j/a_j^2 \end{cases}$$

(Works if the graph is a tree!)

Optimal Network Control with Node Integrators

Given a graph $(\mathcal{V}, \mathcal{E})$, let the plant be given by

$$\dot{x_i} = a_i x_i + b_i u_i + \sum_{(i,j) \in \mathcal{E}} (u_{ij} - u_{ji}) \qquad i \in \mathcal{V}$$

with $a_i < 0$. Then $\widehat{K}(s)$ is the map from x to u given by

$$\left\{egin{array}{l} \dot{z}_i = x_i \ u_{ij} = z_i/a_i - x_i/a_i^2 - z_j/a_j + x_j/a_j^2 \ u_i = b_i(z_i/a_i - x_i/a_i^2) \end{array}
ight.$$

(There is a problem if all b_i are zero. Why?)

Anders Rantzer Towards a Theory of Scalable Control

Relative versus absolute measurements

Centralized information does not help, as long as only local relative measurements are available!

Limitations due to Graph Structure

Let A = -I while B is an oriented incidence matrix, e.g.

$$B = \begin{bmatrix} 1 & 0\\ -1 & 1\\ 0 & -1 \end{bmatrix}.$$

If the graph is a tree, B has full column rank and

$$\|F_{\widehat{K}}\|_{\infty} = \sqrt{\|(B^T B)^{-1}\|} = rac{1}{\sqrt{\lambda_2}},$$

where λ_2 is the algebraic connectivity of the graph. In two extreme cases, a star graph and a one-dimensional path, λ_2 is

1 and
$$\left(2\sin\frac{\pi}{2n}\right)^2$$

respectively.

Anders Rantzer Towards a Theory of Scalable Control

Outline

- Network realizable control
 - Don't look for sparse transfer functions
 - Connection to Internal Model Control
- Scalable H_{∞} optimal synthesis
 - $\,H_\infty$ optimal static controllers
 - $-~H_\infty$ optimal dynamic controllers
- Scalable H_2 optimal synthesis
 - a transportation example
- Concluding remarks

Why do we want sparse feedback matrices?

Why do we want sparse feedback matrices?

A Curious Example

European Control Conference, Limassol, Cyprus 2018 M. Heyden, R. Pates, A. Rantzer A Structured Linear Quadratic Controller for Transportation Problems

Anders Rantzer Towards a Theory of Scalable Control

A Curious Example

Solve:

$$a^{2}A^{T}XA - X - aA^{T}XB \underbrace{a\left(B^{T}XB + R\right)^{-1}B^{T}XA}_{K_{\text{opt}}} + Q = 0.$$

A Curious Example

A Curious Example

Anders Rantzer Towards a Theory of Scalable Control

Why do we want sparse feedback matrices?

This pattern continues

$$u = \begin{bmatrix} * & 0 & & \\ * & * & 0 & \\ 0 & * & * & 0 \\ & 0 & * & * & 0 \end{bmatrix}^{-1} \begin{bmatrix} * & * & * & 0 & & \\ 0 & * & * & * & * & 0 \\ 0 & 0 & 0 & * & * & * & * & 0 \\ & 0 & 0 & 0 & * & * & * & * & 0 \end{bmatrix} x$$

Distributed feedback law:

$$u_{i} = -\frac{p_{i}(a)}{p_{i-1}(a)} \left(a^{-3}x_{2i-1} + a^{-3}x_{2i} - ax_{2i+1} - ax_{2i+2} + a^{2}u_{i-1} \right).$$

No sparse feedback matrix!!!

Why do we want sparse feedback matrices?

 $K_{\text{opt}} = \begin{bmatrix} a^2 + 1 & 0 \\ 0 & a^4 + a^2 + 1 \end{bmatrix}^{-1} \begin{bmatrix} -a^3 & -a^3 & a & a & 0 \\ -a^5 & -a^5 & -a^5 & -a^5 & a (a^2 + 1) \end{bmatrix}$ $= \begin{bmatrix} p_1(a) & 0 \\ -a^2 & \frac{p_2(a)}{p_1(a)} \end{bmatrix}^{-1} \begin{bmatrix} -a^3 & -a^3 & a & a & 0 \\ 0 & 0 & -a^3 & -a^3 & a \end{bmatrix}$

Anders Rantzer Towards a Theory of Scalable Control

Why do we want sparse feedback matrices?

This pattern continues

$$u = \begin{bmatrix} * & 0 & & \\ * & * & 0 & \\ 0 & * & * & 0 \\ 0 & * & * & 0 \end{bmatrix}^{-1} \begin{bmatrix} * & * & * & 0 & & \\ 0 & * & * & * & * & 0 \\ 0 & 0 & 0 & * & * & * & * & 0 \\ 0 & 0 & 0 & * & * & * & * & 0 \end{bmatrix} x$$

Distributed feedback law:

$$u_i = -rac{p_i(a)}{p_{i-1}(a)} \left(a^{-3} x_{2i-1} + a^{-3} x_{2i} - a x_{2i+1} - a x_{2i+2} + a^2 u_{i-1}
ight).$$

No sparse feedback matrix!!!

Conclusions

- Network realizable control
 - Don't look for sparse transfer functions
 - Connection to Internal Model Control
- Scalable H_∞ optimal synthesis
 - H_∞ optimal static controllers
 - $-~H_\infty$ optimal dynamic controllers
- Scalable H_2 optimal synthesis
 - a transportation example
- Concluding remarks

Anders Rantzer Towards a Theory of Scalable Control

Thanks

Carolina Bergeling Martin Heyden Rijad Alisic Richard Pates Hamed Sadeghi

