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Heating Networks

Towards a Theory of Scalable Control

What do we need?
@ Scalable Synthesis
@ Scalable Verification
@ Scalable Modeling

@ Scalable Objectives
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Background Three Widespread Myths

Books on large-scale control and coordination:

Mesarovic, Macko, Takahara (1970)

Singh, Titli (1978)

Findeisen (1980) &

Optimization of structured controllers:

Spatially invariant systems: Bamieh, Paganini, Dahleh (2002)
Distributed controllers: D’Andrea and Dullerud (2003)
Quadratic invariance: Rotkowitz and Lall (2002)

Low rank coordination: Madjidian and Mirkin (2014)
Scalability using positivity: Rantzer (2015) @ Hj optimal controllers are not scalable

Three widespread myths

@ Scalable controllers are hard to optimize

o H, optimal controllers are not scalable

Systems Level Synthesis: Wang, Matni, Doyle (2018)
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Three Widespread Myths

(]

Network realizable control (Systems Level Synthesis)

— Don't look for sparse transfer functions
— Connection to Internal Model Control

@ Scalable H, optimal synthesis

— H, optimal static controllers

— H, optimal dynamic controllers
Three widespread myths

@ Scalable controllers are hard to optimize

©

Scalable Hy optimal synthesis

@ H,, optimal controllers are not scalable — atransportation example

@ Hy optimal controllers are not scalable

(]

They are all wrong! Concluding remarks
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Example: River Dams

Example: River Dams

Consider a model of three water dams along a river:

xl(t + 1) = 0.9x1(t) — ul(t)
xo(t + 1) = 0.1x1(¢) + 0.8x2(2) + u1(t) — ua(?)
x3(t + 1) = 0.2x2(t) + 0.7x3(2) + ua2(t) — us(¢)

Information propagates downstream.
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Consider a model of three water dams along a river:

xl(t + 1) = O.9x1(t) — ul(t)
xo(t + 1) = 0.1x1(t) + 0.8x2(2) + u1(t) — ua(?)
x3(t + 1) = 0.2x2(t) + 0.7x3(¢) + ua(t) — us(¢)

Information propagates downstream.

The transfer function from (1, ug, ug) to (x1, xg, x3) is triangular:
* 0 0
P(z)=|*x * 0
E3 * E3
The localized structure of the state realization is lost in the transfer matrix.
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Closed Loop Convexity

In general, specifications are computationally tractable only if they are
convex constraints on the closed loop map

C(I+PC)™.
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Closed Loop Convexity

In general, specifications are computationally tractable only if they are
convex constraints on the closed loop map

C(I+PC)™.

Sparsity constraints on the matrix C are not closed loop convex and very
difficult to enforce.
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Closed Loop Convexity

In general, specifications are computationally tractable only if they are
convex constraints on the closed loop map

C(I +PC)™L
Sparsity constraints on the matrix C are not closed loop convex and very

difficult to enforce.

However, there is a better choice...
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Network Realizability is a Closed Loop Convex Property!

Theorem 1
Network Realizability is preserved by addition and proper inversion!
If G1 and G are stable and network realizable, then so is G1Ge.
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Network Realizability

Given a graph G = (V, 8), a transfer matrix G is said to be network

realizable on G if it has a stabilizable and detectable realization
G(z) = C(zI — A)~1B + D with

Ay Ain | By 0
A|B] | Am Ayn | © By
c|p| | Cu Cin | Dy 0
| Cn1 Cyn| O Dy

where A;; = 0and C;; = O for (i, j) € €.
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Network Realizability is a Closed Loop Convex Property!

Theorem 1

Network Realizability is preserved by addition and proper inversion!
If G1 and Go are stable and network realizable, then so is G1Go.

The proof is straightforward

For example, if G(z) = C(zI — A)™'B + D and D is invertible, then

G~ has the realization
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A—BD'C|BD!
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Network Realizable Control of Stable Plants

Network Realizable Control of Stable Plants

Theorem 2

Suppose that the transfer matrix P is strictly proper, stable and network
realizable on G. Then, the controller C is stabilizing and network realizable
if and only if @ = C(I 4+ PC) 1 is stable and network realizable.

Theorem 2

Suppose that the transfer matrix P is strictly proper, stable and network
realizable on G. Then, the controller C is stabilizing and network realizable
if and only if @ = C(I + PC) ! is stable and network realizable.

Enforcing network realizability of Q can be done by convex optimization.

But how do we construct a realization of C after optimizing Q?
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Internal Model Control (IMC)

[Garcia/Morari, 1982]

Example: River Dams

+
&
O Q(s) Process x; = O 1 0. 8 0 + lu; —ue
xs 0.2 0.7 us — u3
Pes) 5 Let Q(z) = E(2I — A)™LF be the desired map from reference to input:
= \
[ E11 O 0 [F1 0 O ]
-1 Es; Ese O 0 Fy O
E|F]1 | 0 Ess Es3/0 0 F;s
G|H| |G 0 0|0 0 0
If both P and Q have network realizations on a given graph, then after 0 Gs g Y v L
proper ordering of the states and block partitioning of the matrices also the N $ Gs |00 0

IMC controller will be a network realization on that graph.
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Example: River Dams

Then the controller C = Q(I — PQ) ™! has the realization

X9 [ 0.9

—G1| 0 0 |0 0 7 [#]
i F, Ey| 0 0 |0 0 &
is] 01 G, |08 -G 0O 0O D)
2+ 0 E21 Fg Ezz 0 0 52
£ 0 0 [02 Gy |07 —Gs | |45
&5 ] | 0 0 | 0 Es | F3 Esz | |&3]

Internal Model Control (IMC)

O Q(s)

Process

0
€1

€2

-P(s)Q(s)

Design stable @(s) to make also Q(s) P(s) stable!
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Internal Model Control (IMC)

What if P(s) is unstable?

Network Realizability is a Closed Loop Convex Property!

Theorem 3

Consider P and C such that P is strictly proper and define the closed loop

Hz[c I

Then the following two statements are equivalent:

(@)
(i)

The following two statements are also equivalent:

(iii)

(iv) Both (I +PC)~!and C(I + PC)~! are network

I —P]‘1

[ (I +PC)!

—C(I +PC)™?

O Qfs) Process
-P(s) D
-1

P(I+ CP)_l] -

(I+cp)!

Both P and C are network realizable on G.

H is network realizable on G.

Both PC and C are network realizable on G.

realizable on G.
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Dynamic Buffer Networks

@ Network realizable control

— Don't look for sparse transfer functions
— Connection to Internal Model Control

@ Scalable H, optimal synthesis

— H,, optimal static controllers
— H, optimal dynamic controllers

@ Scalable Hy optimal synthesis
— atransportation example

@ Concluding remarks

Producers, consumers and storages
Examples: water, power, traffic, data

Discrete/continuous, stochastic/deterministic

e 6 o6 o

Multiple commaodities, human interaction
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Scalable Synthesis for Dynamic Buffer Networks

¢

;
%\/ng ;
A )2

HREE

A common approach is to just focus on stationary optimality or equilibrium
conditions and ignore dynamics. ("No arbitrage”)

When is this justified for a control system?
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H ., Optimal Static Control on Networks

Problem:
Given a graph (V, ) and

X = 0% + Z (wij — uji) +w; iey
(ML

find control law u = K x that minimizes the H ., norm of the map from w
to (x, u).
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H ., Optimal Static Control on Networks

Problem:
Given a graph (V, €) and

X = a;x; + Z (uij—uji)+wi i€y
(WIS

find control law u = K x that minimizes the H, norm of the map from w
to (x, w).

Solution:
An optimal control law when a; < 0 is given by

uj = x/a; —xj/a; (@ Jj) € E.

[Lidstrom/Rantzer, ACC2016]
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-1 0 O
%= —diag(1,3,2)x+ |1 1 —1llu+w
—_———
/. 0O 0 1
—_——
B

Find controller uw = Kx that minimizes the H, gain from w to (x, u). The
Riccati solution gives

093 -—0.11 0.00
K, = |-0.05 —0.17 -0.01
0.04 0.16 —0.26

Our theorem gives another optimal solution:

1

1 % 0
K2 = 0 _g 0
0 3
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Structure Preserving Static Feedback

Structure Preserving Static Feedback

Problem

Consider the system & = Ax + Bu + w with A symmetric and Hurwitz.
Find a state feedback controller u = K x that minimizes the H,, norm of
the map from w to («, ©) in the closed loop system & = (A + BK)x + w.

Theorem
A solution is given by u = K, x where K, = BT A=!. The minimal value
of the norm is \/||(A2 + BBT)-1|.
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Problem

Consider the system x = Ax + Bu + w with A symmetric and Hurwitz.
Find a state feedback controller u = K x that minimizes the H,, norm of
the map from w to (x, ©) in the closed loop system & = (A + BK)x + w.

Theorem
A solution is given by u = K, x where K, = BT A~!. The minimal value
of the norm is 1/||(A2 + BBT)-1|.

Proof idea
K. = BT A~1 minimizes the static gain. Other frequencies are better off.
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Network realizable control

— Don't look for sparse transfer functions
— Connection to Internal Model Control

@ Scalable H, optimal synthesis

— H,, optimal static controllers
— H, optimal dynamic controllers

©

Scalable Hy optimal synthesis
— atransportation example

©

Concluding remarks
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Frequency Weighted Specifications

X w
P(s) |—=O—

e e1 = Keo + w1

w1 X1 =P
K(s) eg e1 +wg

Disturbance rejection:
The transfer functions (I + PK)~! and (I + PK)~1P should be small
for low frequencies. (“Integral action”)

Measurement errors:
The transfer functions K(I + PK)~ and PK(I + PK)~! should be
small for high frequencies.
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Structure Preserving H,, Control

Theorem
Let P(s) = (sI — A)~!B with A symmetric negative definite. The
problem
Minimize || (I + KP) ™" K||wo
subjectto  [|1P(I+ KP) <7
K stabilizing
is solved by

- A~1B)T 1
) = 142D (s L),
T s
provided that T > /||BT A—4B||.
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Optimal Network Control with Edge Integrators

ZTo I T

@
PI control PI control 2

To fuie —uoi w12 —uar| 7 fuis —us se—ugl| Fad
2 actuator 1 : 31[ actuator [« 2 3

wll qu — Uq1

Given a graph (V, ), let P(s) be the transfer matrix from u to x given by
X; = a;x; + Z(L—’j)eg(uij R uﬁ), i € Ywitha; < 0. Then K(S) isa
separate Pl controller for each graph edge:

{2"1'] = k(xi/a; — x;/a;)

Ujj = 2ij — xi/a? +xj/a3-

(Works if the graph is a tree!)
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Optimal Network Control with Node Integrators Limitations due to Graph Structure

Given a graph (V, 8), oz R Let A = —1I while B is an oriented incidence matrix, e.g.
1 0
X = a;x; + bju; + Z (u,-j—uﬁ) ey B=|[-1 1
(L)€ 0 -1

with @; < 0. Then I?(s) is the map from x to u given by If the graph is a tree, B has full column rank and

1
4 = % [Fgllec = \/I(B"B) || = T
wij = zifa; — x;/a? — zj/a; + x;/a’ - [ X
u; = bi(zi/ai N xi/a%) where Ag is the algebraic connectivity of the graph. In two extreme cases,

a star graph and a one-dimensional path, Ag is

1 and (2 sin 2£)2

(There is a problem if all b; are zero. Why?) n

respectively.
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Relative versus absolute measurements

T2

@ Network realizable control
— Don't look for sparse transfer functions

Uy U — i
ﬁ ﬁ ﬁ] Connection to Internal Model Control

@ Scalable H, optimal synthesis

— H, optimal static controllers
— H, optimal dynamic controllers

vehicle position x(t)

vehicle

@ Scalable Hy optimal synthesis

500 0 500 1,000 — atransportation example
time [t] time [t]

Centralized information does not help, as long as only local relative @ Concluding remarks
measurements are available!
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Hy Optimal Control Hy Optimal Control

@ Optimal state feedback gains are dense. @ Optimal state feedback gains are dense.

@ They are unique. @ They are unique.

Bad for large scale problems!

Why do we want sparse feedback matrices? Why do we want sparse feedback matrices?

Sparsity = Distributed computation of u.
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Why do we want sparse feedback matrices? A Curious Example

x * * * * ©o—0©r “o—0©r
* * * * * *
* * A\ - X5 Uy X4 1 X3 U X2 1 X1
u — * * * * * * * * * x O m O
- * * * * * U
* * * * * *
©R < X * = 1—usy 1—u, 1
* * * * *

Sparsity ¢—= Distributed computation of u.

European Control Conference, Limassol, Cyprus 2018
M. Heyden, R. Pates, A. Rantzer
A Structured Linear Quadratic Controller for Transportation Problems
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A Curious Example A Curious Example

SoF—©F So—©F So—©F =O—©F
% ) ffi 1 ic.?\’ Ui f.z 1 e e Uz ffi 1 f.?\’ ui f.z 1 e
T J & \7\ o i</ J &R e\ 0
l—ug l—ul 1 l—uz 1—u1 1
. 2k 2 2 2
u[OI]?}/,l[Ill],.‘. k:Oa (x1[E]? + x3[E]* + x5[%]%) Solve:
11000 0 0 1
o) i /4 a2ATXA—X—aATXBa(BTXB+R) BTXA+Q = 0.
stx[k+1]=[0 0 1 1 0] x[k]+ |-1 0 [ u[k], x[0] € R®. P
00000 0 1
0000 1 0 -1
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Why do we want sparse feedback matrices?

A Curious Example

SO—<©F SO—©F
X5 X4 X3 X9 X1
8 U O 1 % 251 O 1 8
1-— Us 1-— Ui 1
There is a pattern...
*= x % x 0 0 0 0 O
*x *x % x * % 0 0 O
Kopt N
* % % % x kx *x x 0
* % ok ok ok ok ok ok %

Anders Rantzer Towards a Theory of Scalable Control

Ko - [a2 + 1 0 ]_1 [—a3 —a® a a 0 ]
opt = 0 at+a®+1 —a® —a® —a® —d° a(a®+1)
—1
p1(a) v —a3 a@ a a O
R P2 (a) [ 0 0 —-a¢ -a° a]
pi(a)
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Why do we want sparse feedback matrices?

This pattern continues

o % %

o % ¥ ©

0
*
*
0

*
* ©
=)

[ —

—

oo %
o ¥ ¥
oo ¥ ¥

Distributed feedback law:

_ pi(a)

(a 2291 + a P29 — axpip1 — axoro+a’ui1).
pi—l(a)

u; =
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Why do we want sparse feedback matrices?

This pattern continues

* 0
* * 0
0 x
0

o ¥ ¥ ©

u =

* %
* ©
—=2
oo *
[SEEE
oo ¥ ¥

Distributed feedback law:

_ pi(a)

(a 2291 + a P xy; — axpip1 — axgira+a’ui ).
pi—l(a)

u; =

No sparse feedback matrix!!!
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Conclusions

Network realizable control

— Don't look for sparse transfer functions
— Connection to Internal Model Control

@ Scalable H, optimal synthesis

— H,, optimal static controllers
— H, optimal dynamic controllers

©

Scalable Hy optimal synthesis
— atransportation example

©

Concluding remarks
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