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Towards a Scalable Theory of Control

What do we need?

Scalable Synthesis

Scalable Verification

Scalable Modeling

Scalable Objectives
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Background

Books on large-scale control and coordination:

Mesarovic, Macko, Takahara (1970)
Singh, Titli (1978)
Findeisen (1980)

Optimization of structured controllers:

Spatially invariant systems: Bamieh, Paganini, Dahleh (2002)
Distributed controllers: D’Andrea and Dullerud (2003)
Quadratic invariance: Rotkowitz and Lall (2002)
Low rank coordination: Madjidian and Mirkin (2014)
Scalability using positivity: Rantzer (2015)
Systems Level Synthesis: Wang, Matni, Doyle (2018)
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Three Widespread Myths

Three widespread myths
Scalable controllers are hard to optimize

HÜ optimal controllers are not scalable

H2 optimal controllers are not scalable
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Three Widespread Myths

Three widespread myths
Scalable controllers are hard to optimize

HÜ optimal controllers are not scalable

H2 optimal controllers are not scalable
They are all wrong!

Anders Rantzer Towards a Theory of Scalable Control

Outline

Network realizable control (Systems Level Synthesis)
– Don’t look for sparse transfer functions
– Connection to Internal Model Control

Scalable HÜ optimal synthesis
– HÜ optimal static controllers
– HÜ optimal dynamic controllers

Scalable H2 optimal synthesis
– a transportation example

Concluding remarks
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Example: River Dams

Consider a model of three water dams along a river:

x1(t + 1) = 0.9x1(t) u1(t)
x2(t + 1) = 0.1x1(t) + 0.8x2(t) + u1(t) u2(t)
x3(t + 1) = 0.2x2(t) + 0.7x3(t) + u2(t) u3(t)

Information propagates downstream.

The transfer function from (u1, u2, u3) to (x1, x2, x3) is triangular:

P(z) =

S

U

§ 0 0
§ § 0
§ § §

T

V

The localized structure of the state realization is lost in the transfer matrix.
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Closed Loop Convexity

In general, specifications are computationally tractable only if they are
convex constraints on the closed loop map

C(I + PC) 1
.

Sparsity constraints on the matrix C are not closed loop convex and very
di�cult to enforce.

However, there is a better choice...
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Network Realizability

Given a graph G = (V, E), a transfer matrix G is said to be network
realizable on G if it has a stabilizable and detectable realization
G(z) = C(zI  A) 1

B + D with

5

A B

C D

6

=

S

W

W

W

W

W

W

W

U

A11 . . . A1N B1 0
...

...
. . .

AN1 . . . AN N 0 BN

C11 . . . C1n D1 0
...

...
. . .

CN1 . . . CN N 0 DN

T

X

X

X

X

X

X

X

V

where Aij = 0 and Cij = 0 for (i, j) ,B E.
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Network Realizability is a Closed Loop Convex Property!

Theorem 1
Network Realizability is preserved by addition and proper inversion!
If G1 and G2 are stable and network realizable, then so is G1G2.

The proof is straightforward
For example, if G(z) = C(zI  A) 1

B + D and D is invertible, then
G
 1 has the realization

5

A BD
 1

C BD
 1

 D
 1

C D
 1

6

.
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Network Realizable Control of Stable Plants

Theorem 2
Suppose that the transfer matrix P is strictly proper, stable and network
realizable on G. Then, the controller C is stabilizing and network realizable
if and only if Q = C(I + PC) 1 is stable and network realizable.

Enforcing network realizability of Q can be done by convex optimization.

But how do we construct a realization of C after optimizing Q?
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Suppose that the transfer matrix P is strictly proper, stable and network
realizable on G. Then, the controller C is stabilizing and network realizable
if and only if Q = C(I + PC) 1 is stable and network realizable.
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But how do we construct a realization of C after optimizing Q?
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Internal Model Control (IMC)

[Garcia/Morari, 1982]

If both P and Q have network realizations on a given graph, then after
proper ordering of the states and block partitioning of the matrices also the
IMC controller will be a network realization on that graph.
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Example: River Dams

S

U

x
+
1

x
+
2

x
+
3

T

V =

S

U

0.9 0 0
0.1 0.8 0
0 0.2 0.7

T

V

S

U

x1
x2
x3

T

V+

S

U

 u1
u1  u2
u2  u3

T

V

Let Q(z) = E(zI  A) 1
F be the desired map from reference to input:

5

E F

G H

6

=

S

W

W

W

W

W

W

U

E11 0 0 F1 0 0
E21 E22 0 0 F2 0
0 E32 E33 0 0 F3

G1 0 0 0 0 0
0 G2 0 0 0 0
0 0 G3 0 0 0

T

X

X

X

X

X

X

V
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Example: River Dams

Then the controller C = Q(I  PQ) 1 has the realization

S

W

W

W

W

W

W

U

x̂
+
1

�
+
1

x̂
+
2

�
+
2

x̂
+
3

�
+
3

T

X

X

X

X

X

X

V

=

S

W

W

W

W

W

W

U

0.9  G1 0 0 0 0
F1 E11 0 0 0 0
0.1 G1 0.8  G2 0 0
0 E21 F2 E22 0 0
0 0 0.2 G2 0.7  G3
0 0 0 E32 F3 E33

T

X

X

X

X

X

X

V

S

W

W

W

W

W

W

U

x̂1
�1
x̂2
�2
x̂3
�3

T

X

X

X

X

X

X

V

 

S

W

W

W

W

W

W

U

0
e1
0
e2
0
e3

T

X

X

X

X

X

X

V

.
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Internal Model Control (IMC)

What if P(s) is unstable?
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Internal Model Control (IMC)

Design stable Q(s) to make also Q(s)P(s) stable!
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Network Realizability is a Closed Loop Convex Property!

Theorem 3
Consider P and C such that P is strictly proper and define the closed loop

H =
5

I  P

C I

6 1
=

5

(I + PC) 1
P(I + CP) 1

 C(I + PC) 1 (I + CP) 1

6

.

Then the following two statements are equivalent:

(i) Both P and C are network realizable on G.
(ii) H is network realizable on G.

The following two statements are also equivalent:

(iii) Both PC and C are network realizable on G.
(iv) Both (I + PC) 1 and C(I + PC) 1 are network

realizable on G.
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Outline

Network realizable control
– Don’t look for sparse transfer functions
– Connection to Internal Model Control

Scalable HÜ optimal synthesis
– HÜ optimal static controllers
– HÜ optimal dynamic controllers

Scalable H2 optimal synthesis
– a transportation example

Concluding remarks
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Dynamic Bu�er Networks

Producers, consumers and storages
Examples: water, power, tra�c, data
Discrete/continuous, stochastic/deterministic
Multiple commodities, human interaction
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Scalable Synthesis for Dynamic Bu�er Networks

A common approach is to just focus on stationary optimality or equilibrium
conditions and ignore dynamics. (”No arbitrage”)

When is this justified for a control system?
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HÜ Optimal Static Control on Networks

Problem:
Given a graph (V, E) and

ẋi = ai xi +
ÿ

(i, j)BE
(uij  uji) + wi i B V

find control law u = K x that minimizes the HÜ norm of the map from w

to (x, u).

Solution:
An optimal control law when ai < 0 is given by

uij = xi/ai  xj/a j (i, j) B E.

[Lidström/Rantzer, ACC2016]
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Example

ẋ =  diag(1, 3, 2)¸ ˚˙ ˝
A

x +

S

U

 1 0 0
1 1  1
0 0 1

T

V

¸ ˚˙ ˝
B

u + w

Find controller u = K x that minimizes the HÜ gain from w to (x, u). The
Riccati solution gives

K1 =

S

U

0.93  0.11 0.00
 0.05  0.17  0.01
0.04 0.16  0.26

T

V

Our theorem gives another optimal solution:

K2 =

S

U

1  1
3 0

0  1
3 0

0 1
3  1

2

T

V
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Structure Preserving Static Feedback

Problem
Consider the system ẋ = Ax + Bu + w with A symmetric and Hurwitz.
Find a state feedback controller u = K x that minimizes the HÜ norm of
the map from w to (x, u) in the closed loop system ẋ = (A+ BK)x+w.

Theorem
A solution is given by u = K§x where K§ = B

T
A
 1. The minimal value

of the norm is

q(A2 + BBT) 1q.

Proof idea
K§ = B

T
A
 1 minimizes the static gain. Other frequencies are better o�.
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Outline

Network realizable control
– Don’t look for sparse transfer functions
– Connection to Internal Model Control

Scalable HÜ optimal synthesis
– HÜ optimal static controllers
– HÜ optimal dynamic controllers

Scalable H2 optimal synthesis
– a transportation example

Concluding remarks
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Frequency Weighted Specifications

P(s)

K(s)

e2
e1

w1 x1

w2x2

e1 = K e2 + w1

e2 = Pe1 + w2

Disturbance rejection:
The transfer functions (I + P K) 1 and (I + P K) 1

P should be small
for low frequencies. (“Integral action”)

Measurement errors:
The transfer functions K(I + P K) 1 and P K(I + P K) 1 should be
small for high frequencies.
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Structure Preserving HÜ Control

Theorem
Let P(s) = (sI  A) 1

B with A symmetric negative definite. The
problem

Minimize q (I + K P) 1
KqÜ

subject to q1
s

P(I + K P) 1qÜ 2 �

K stabilizing

is solved by

‚K(s) =
q(A

 1
B)†q

�

3

B
T

A
 2  

1
s

B
T

A
 1
4

.

provided that � 3

qBT A 4 Bq.
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Optimal Network Control with Edge Integrators

2 1 3

PI control

actuator

x1x2

u12 � u21u12 � u21

PI control

actuator

x3x1

u13 � u31u13 � u31

x1 u14 � u41

Given a graph (V, E), let P(s) be the transfer matrix from u to x given by
ẋi = ai xi +

q
(i, j)BE(uij  uji), i B V with ai < 0. Then ‚K(s) is a

separate PI controller for each graph edge:
I

żi j = k(xi/ai  xj/a j)
uij = zi j  xi/a

2
i + xj/a

2
j

(Works if the graph is a tree!)
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Optimal Network Control with Node Integrators

Given a graph (V, E), let the plant be given by

ẋi = ai xi + biui +
ÿ

(i, j)BE
(uij  uji) i B V

with ai < 0. Then ‚K(s) is the map from x to u given by
Y
_]

_[

żi = xi

ui j = zi/ai  xi/a
2
i  zj/a j + xj/a

2
j

ui = bi(zi/ai  xi/a
2
i )

(There is a problem if all bi are zero. Why?)
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Limitations due to Graph Structure

Let A =  I while B is an oriented incidence matrix, e.g.

B =

S

U

1 0
 1 1
0  1

T

V .

If the graph is a tree, B has full column rank and

qF ‚KqÜ =
Ò
q(BT B) 1q =

1~
�2

,

where �2 is the algebraic connectivity of the graph. In two extreme cases,
a star graph and a one-dimensional path, �2 is

1 and
1

2 sin �

2n

22

respectively.
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Relative versus absolute measurements

· · ·· · ·

x1

x2

xn�1

xn

u1 u2 un�1 un
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p
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n
x
(t
)

0 500 1,000
0
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h
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p
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n
x
(t
)

Centralized information does not help, as long as only local relative
measurements are available!
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H2 Optimal Control

1 Optimal state feedback gains are dense.
2 They are unique.

Bad for large scale problems!
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Why do we want sparse feedback matrices?

u =

S

W

W

W

W

W

W

W

W

W

W

W

W

W

U

§ § § § §
§ § § § § §

§ § §
§ § § §

§ § § § § § § § §
§ § § § §

§ § § § § § § §
§ § § § §

§ § §
§ § § § §

T

X

X

X

X

X

X

X

X

X

X

X

X

X

V

x
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Why do we want sparse feedback matrices?

u =

S

W

W

W

W

W

W

W

W

W

W

W

W

W

U

§ § § § §
§ § § § § §

§ § §
§ § § §

§ § § § § § § § §
§ § § § §

§ § § § § § § §
§ § § § §

§ § §
§ § § § §

T

X

X

X

X

X

X

X

X

X

X

X

X

X

V

x

Sparsity =[ Distributed computation of u.
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Why do we want sparse feedback matrices?

u =

S

W

W

W

W

W

W

W

W

W

W

W

W

W

U

§ § § § §
§ § § § § §

§ § §
§ § § §

§ § § § § § § § §
§ § § § §

§ § § § § § § §
§ § § § §

§ § §
§ § § § §

T

X

X

X

X

X

X

X

X

X

X

X

X

X

V

x

Sparsity ,Z= Distributed computation of u.
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A Curious Example

x5 x4 x3 x2 x1u2 1 u1 1

1 u2 1 u1 1

European Control Conference, Limassol, Cyprus 2018
M. Heyden, R. Pates, A. Rantzer
A Structured Linear Quadratic Controller for Transportation Problems
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A Curious Example

x5 x4 x3 x2 x1u2 1 u1 1

1 u2 1 u1 1

min
u[0],u[1],...

Üÿ

k=0
a

2k
!

x1[k]2 + x3[k]2 + x5[k]2
"

s.t. x[k + 1] =

S

W

W

W

W

U

1 1 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 1

T

X

X

X

X

V

x[k] +

S

W

W

W

W

U

0 0
1 0
 1 0
0 1
0  1

T

X

X

X

X

V

u[k], x[0] B R5
.

Anders Rantzer Towards a Theory of Scalable Control

A Curious Example

x5 x4 x3 x2 x1u2 1 u1 1

1 u2 1 u1 1

Solve:

a
2

A
T

X A X  aA
T

X B a

1

B
T

X B + R

2 1
B

T
X A

¸ ˚˙ ˝
Kopt

+Q = 0.
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A Curious Example

x5 x4 x3 x2 x1u2 1 u1 1

1 u2 1 u1 1

There is a pattern...

Kopt =

S

W

W

U

§ § § § 0 0 0 0 0
§ § § § § § 0 0 0
§ § § § § § § § 0
§ § § § § § § § §

T

X

X

V
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Why do we want sparse feedback matrices?

Kopt =
5

a
2 + 1 0

0 a
4 + a

2 + 1

6 1 5 a
3  a

3
a a 0

 a
5  a

5  a
5  a

5
a
!

a
2 + 1

"

6

=

S

U

p1 (a) 0
 a

2 p2 (a)
p1 (a)

T

V

 1
5

 a
3  a

3
a a 0

0 0  a
3  a

3
a

6
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Why do we want sparse feedback matrices?

This pattern continues

u =
S

W

W

W

U

§ 0
§ § 0
0 § § 0

0 § § 0

T

X

X

X

V

 1 S

W

W

W

U

§ § § 0
0 § § § § 0
0 0 0 § § § § 0

0 0 0 § § § § 0

T

X

X

X

V

x

Distributed feedback law:

ui =  
pi(a)

pi 1(a)
!

a
 3

x2i 1 + a
 3

x2i  ax2i+1  ax2i+2+a
2
ui 1

"

.

No sparse feedback matrix!!!
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Why do we want sparse feedback matrices?

This pattern continues

u =
S

W

W

W

U

§ 0
§ § 0
0 § § 0

0 § § 0

T

X

X

X

V

 1 S

W

W

W

U

§ § § 0
0 § § § § 0
0 0 0 § § § § 0

0 0 0 § § § § 0

T

X

X

X

V

x

Distributed feedback law:

ui =  
pi(a)

pi 1(a)
!

a
 3

x2i 1 + a
 3

x2i  ax2i+1  ax2i+2+a
2
ui 1

"

.

No sparse feedback matrix!!!
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Conclusions

Network realizable control
– Don’t look for sparse transfer functions
– Connection to Internal Model Control

Scalable HÜ optimal synthesis
– HÜ optimal static controllers
– HÜ optimal dynamic controllers

Scalable H2 optimal synthesis
– a transportation example

Concluding remarks
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