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Motivation: discrete-time consensus systems
n agents, x0 vector of their initial opinions. A = stochastic matrix.

⎧⎪⎪
⎨
⎪⎪⎩

xk+1 = Axk

x0 ∈ Rn
≥0

At each time agent i updates her opinion by
averaging on the opinions of her neighbours with
weights A[i , ∶].

A =
⎛

⎝

0 0 0.5 0 0.5
0.2 0 0.8 0 0
0 1 0 0 0
0 0.3 0 0 0.7
1 0 0 0 0
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Consensus: If limk→∞ xk = (a, a, . . . , a)T for some a ∈ R.

The system converges to consensus independently on x0 iff Ak has an
entrywise positive column for some k ∈ N (equiv. the graph associated
to A has a globally reachable node).
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Motivation: discrete-time consensus systems

M= {M1, . . . ,Mm}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

stochastic

⎧⎪⎪
⎨
⎪⎪⎩

xk+1 =Mikxk Mik ∈ M

x0 ∈ Rn
≥0

xk = vector of the opinions at time k .

Consensus: Does there exist a sequence Mj1 ,Mj2 , . . . such that

lim
k→∞

xk = (a, a, . . . , a)T for some a ∈ R, independently of x0 ?

M=

⎧⎪⎪
⎨
⎪⎪⎩

M1 = (
0 0 0 1
0.3 0 0.7 0
0 1 0 0
0 0 1 0

) ,M2 = (
0 1 0 0
1 0 0 0
0.5 0 0 0.5
0 0 1 0

)

⎫⎪⎪
⎬
⎪⎪⎭

,

M1M2M2M1 =

⎛
⎜
⎜
⎜
⎝

0 0 0.5 0.5
0.205 0.35 0.245 0.3

0.3 0 0.7 0
0.15 0.5 0.35 0

⎞
⎟
⎟
⎟
⎠

1

23

4

1 start

2 start3start

4start

M2M1M2

M1

M1

M2
M2

M1

M2M1
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xk+1 =Mikxk Mik ∈ M

x0 ∈ Rn
≥0

xk = vector of the opinions at time k .

Consensus: Does there exist a sequence Mj1 ,Mj2 , . . . such that

lim
k→∞

xk = (a, a, . . . , a)T for some a ∈ R, independently of x0 ?

YES iff there exists a finite product Mj1 ⋅ . . . ⋅Mjl of matrices in M that
has an entrywise positive column.

Equivalently: iff there exists a vertex that is reachable from any vertex by
a path labeled by Mj1 , . . . ,Mjl .

↝ the length of the shortest positive-column product influences the rate
of convergence to consensus
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Column-positivity and pc-index

M=

⎧⎪⎪
⎨
⎪⎪⎩

M1 = (
0 0 0 1
1 0 1 0
0 1 0 0
0 0 1 0

) ,M2 = (
0 1 0 0
1 0 0 0
1 0 0 1
0 0 1 0

)

⎫⎪⎪
⎬
⎪⎪⎭

, M1M2M2M1 = (
0 0 1 1
1 1 1 1
1 0 1 0
1 1 1 0

) > 0

A set M of nonnegative matrices is column-positive if it admits a
product with an entrywise positive column. The length of the shortest of
these products is called its pc-index [pc(M)].

Equivalently the labeled directed graph induced by M admits a se-
quence of labels l = l1, . . . , ls and a vertex and that is reachable from
any other vertex by following a path labeled by l .

4 / 10



Randomized generation of the matrices: Bm(n,p)
m = # of matrices, n = matrix size

m = 3,n = 4

(
1 0

1 0
1 1 1 0
0 0 0 1
0 1 0 0

) ,

(
1 0 0 1
0 0 1 0
0 1 1 0
1 0 0 0

), (
0 0 0 1
1 1 0 0
0 0 1 1
1 0 0 0

)

⎧⎪⎪
⎨
⎪⎪⎩

= 1 with probability p = p(n)

= 0 with probability 1 − p

Equivalently: m = # of labels, n = # of vertices

m = 4,n = 15

l1

l1

l1

l1

l1

l2 l2

l2

l2

l2

l2

l3
l3

l3l3

l3
l4 l4l4

l4

l4
l4

l4

What is the probability that Bm(n,p) is column-positive as n →∞?
What is its expected pc-index?
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Sharp threshold for column-positivity

Theorem. [C., Jungers ’18] Let m ≥ 2, c ∈ R, p̂ = (log n + c)/n. For any
p(n) ∈ [0,1], as n →∞ it holds that:

P(Bm(n,p) is column-positive) Ð→

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if lim
n→∞

p

p̂
> 1

0 if lim
n→∞

p

p̂
< 1

∗ lim
n→∞

P(Bm(n, p̂) is column-positive)≤1−(1−e−e
−c
)
m

∗ lim
n→∞

P(Bm(n, p̂) is column-positive) ≥ 1−(1−e−2e
−c
)
m
me−2e

−c
(1−e−2e

−c
)
m−1

Moreover, if limn→∞ p/p̂ > 1:

P(Bm(n,p) is column-positive) ≥ 1 − n−1 −O (ne−np) −O (n−2) .
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Why resilience?
Complete labeled graph where each edge has probability 1 − p to break:

Does there still exist a node reachable from everywhere by the same
sequence of labels?

Risultatiiiiiii

12

3 4

YES when p > (log n + c)/n (with high probability).
In these terms the network is resilient with respect to the

column-positivity property.
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pc-index and scalability

Theorem. [C., Jungers ’18] Let m ≥ 2, c ∈ R, p̂ = (log n + c)/n. Then

∗ If lim
n→∞

p/p̂ > 1: lim
n→∞

P(pc(Bm(n,p)) = O(n log n)) = 1

∗ If lim
n→∞

p/p̂ = 1:

lim
n→∞

P(pc(Bm(n,p)) = O(n log3 n) ∣Bm(n,p) has no zero rows) = 1

The lenght of the shortest positive-column product of Bm(p) is
scaling well with respect to n with high probability.

↝ The convergence rate to consensus of the consensus system whose
matrices are generated by Bm(p) is scaling well with respect to n.
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Sketch of the proofs

1. Case lim
n→∞

p/p̂ > 1: We prove that Bm(n,p) ≥ P̄m(n) whp, where

P̄m(n) is a set of m permutation matrices with a positive entry added.

● Perfect matchings on random bipartite graphs;

● Prove that if P̄m(n) is uniformly distributed, then it is column-positive
and with pc-index of O(n log n) with high probability;

● Few technical lemmas to connect the distributions of Bm(n,p) and
P̄m(n).

2. Case lim
n→∞

p/p̂ < 1: each matrix of Bm(n,p) has a zero row whp.

3. Case p ∼ p̂ = (log n + c)/n:

● Similarly as case 1., but P̄m(n) is replaced by a set of {0,1}-matrices
with exactly one 1 in every row (synchronizing automaton);

● Results on random synchronizing automata [Nicaud 2014].
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Thank you!
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