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Motivation: discrete-time consensus systems

n agents, xg vector of their initial opinions. A = stochastic matrix.

averaging on the opinions of her neighbours with

weights A[/,:].

Xies1 = Axk At each time agent / updates her opinion by
Xo € RQO

Consensus: If limy e Xk = (a,a,...,a)" for some aeR.
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4 02 0.640.2100.13
A*=1026 1 0640 0
0420380190 0
1 0 0.6500.25
Consensus: If limy e Xk = (a,a,...,a)" for some aeR.

The system converges to consensus independently on xg iff AX has an
entrywise positive column for some k € N (equiv. the graph associated
to A has a globally reachable node).
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M :{Ml""aMm}
—_———
stochastic

Xks1 = My xc M, e M
X0 € Rgo

Xy = vector of the opinions at time k.

Consensus: Does there exist a sequence M;,, M; such that
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klim xk = (a,a,..., a)T for some a € R, independently of xq ?
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M:{Mlz"'va}
|
stochastic

Xk+1 = Mix  M; e M
Xp € Rgo

Xy = vector of the opinions at time k.

Does there exist a sequence M;, M,,,... such that
klim xk =(a,a,..., a)T for some a € R, independently of xp ?
— 00
iff there exists a finite product M; -...- M;, of matrices in M that

has an entrywise positive column.

iff there exists a vertex that is reachable from any vertex by
a path labeled by M;,,..., M;.

the length of the shortest positive-column product influences the rate
of convergence to consensus
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Column-positivity and pc-index

0008) (3088 0911
M=iMi=|5160)M2={1001 ] MiM2MoMy=| 1516 |>0
0010 0010 1110

A set M of nonnegative matrices is column-positive if it admits a
product with an entrywise positive column. The length of the shortest of
these products is called its pc-index [pc(M)].

Equivalently the labeled directed graph induced by M admits a se-
quence of labels / = /1,..., /s and a vertex and that is reachable from
any other vertex by following a path labeled by /.
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Randomized generation of the matrices: B,,(n, p)

m = # of matrices, n = matrix size

1 =1  with probability p = p(n)
’ =0 with probability 1 -p
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Randomized generation of the matrices: B,,(n, p)

m = # of matrices, n = matrix size

10190 soot =1 with probability p = p(n)
0900/ \1663) =0 with probability 1 - p

5/10



Randomized generation of the matrices: B,,(n, p)

m = # of matrices, n = matrix size m=3n=4

=1  with probability p = p(n)
=0 with probability 1 -p

5/10



Randomized generation of the matrices: B,,(n, p)

m = # of matrices, n = matrix size m=3n=4

=1  with probability p = p(n)
=0 with probability 1 -p

5/10



Randomized generation of the matrices: B,,(n, p)
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Randomized generation of the matrices: B,,(n, p)

m = # of matrices, n = matrix size m=3,n=4
=1  with probability p = p(n)

=0 with probability 1 -p

Equivalently: m = # of labels, n = # of vertices
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m = # of matrices, n = matrix size m=3n=4

=1  with probability p = p(n)
=0 with probability 1 -p

Equivalently: m = # of labels, n = # of vertices m=4,n=15
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Randomized generation of the matrices: B,,(n, p)

m = # of matrices, n = matrix size m=3n=4

=1  with probability p = p(n)
=0 with probability 1 -p

Equivalently: m = # of labels, n = # of vertices m=4,n=15

SN
o N ,%4mﬁ4wz

5

What is the probability that B,,(n, p) is column-positive as n - co?
What is its expected pc-index?
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Sharp threshold for column-positivity

Theorem. [C., Jungers '18] Let m>2, c € R, p = (logn +c)/n. For any
p(n) € [0,1], as n - oo it holds that:

1 if lim 251
n—>oop

P(Bm(n, p) is column-positive) —>
0 if lim 2 <1

n=oco p
* ,JLTO P(Bm(n, p) is cqumn—pOSitive)gl—(l_e,e—c)m
) JL"QO P(Bm(”’ p) is C0|umn—positive) > 1—(1—6_26_C)mme—2e“(1_e—2e-6)mfl
Moreover, if lim,_., p/p > 1:

P(Bpm(n, p) is column-positive) > 1 - nt-0(ne"P)-0 (n_2) .
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Why resilience?
Complete labeled graph where each edge has probability 1 — p to break:
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Why resilience?
Complete labeled graph where each edge has probability 1 — p to break:

Does there still exist a node reachable from everywhere by the same

sequence of labels?
(0

YES when p > (logn+ c¢)/n (with high probability).
In these terms the network is resilient with respect to the
column-positivity property.




pc-index and scalability

Theorem. [C., Jungers '18] Let m>2, ceR, p = (logn+c)/n. Then
+ If lim p/p > 1: lim ]P’(pc(Bm(n,p)) = O(nlog n)) =1
n—oo n—oo

+ If lim p/p =1:

lim ]P’(pc(Bm(n,p)) = O(nlog® n) ‘Bm(n,p) has no zero rows) =1

4
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pc-index and scalability

Theorem. [C., Jungers '18] Let m>2, ceR, p=(logn+c)/n. Then

+ If lim p/p > 1: Ji_)n;oIP’(pc(Bm(n,p)) = O(nlog n)) =1

n—oo
+ If lim p/p =1:
n—oo

lim ]P’(pc(Bm(n,p)) = O(nlog® n) ‘Bm(n,p) has no zero rows) =1

The lenght of the shortest positive-column product of B,(p) is
scaling well with respect to n with high probability.

~» The convergence rate to consensus of the consensus system whose
matrices are generated by B,(p) is scaling well with respect to n.
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Sketch of the proofs
1. Case lim p/p > 1: We prove that B, (n, p) > Pm(n) whp, where

Pm(n) is a set of m permutation matrices with a positive entry added.

® Perfect matchings on random bipartite graphs;
* Prove that if P,,(n) is uniformly distributed, then it is column-positive
and with pc-index of O(nlogn) with high probability;
* Few technical lemmas to connect the distributions of B,(n, p) and
Pm(n).
2. Case nILnQo p/p < 1: each matrix of B,(n, p) has a zero row whp.
3. Case p~p=(logn+c)/n:

* Similarly as case 1., but P,,(n) is replaced by a set of {0, 1}-matrices
with exactly one 1 in every row (synchronizing automaton);
¢ Results on random synchronizing automata [Nicaud 2014].
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Thank you!



