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Feedback Control to Improve Transportation Networks

• Growing number of sensors → more realtime

data → faster demand changes

• More possibilities for communication (V2V,

V2I, ...)

• But the road network remains (almost) the

same

• Autonomous vehicles may not reduce the

traffic demand [Spieser et al., 2014]

Aim: Use feedback to improve the utilization of the

network resources
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Global Optimality by Local Decisions?

Local measurements and control actions

⇒

Global throughput optimality

Benefits: A decentralized and scalable control policy

Challenge: Use local control policies to optimize global objectives
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Traffic Network as a Graph

λi

λj
Ck

• Capacited multigraph G = (V, E ,C )
– V - set of junctions

– E - set of cells

– C = diag(c), ci - outflow capacity of cell i

• External inflows λi

• Traffic volume xi in cell i
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Model - Dynamics

• xi traffic volume in cell i

• λi external inflow

• ci the cells outflow capacity

• R routing matrix – Rij fraction of flow from i to j

• zi outflow from cell i

• ui (x) ≤ ci traffic signal control (Assumption: when xi > 0, zi = ui (x).)

ẋi = λi +
∑
j∈E

Rjizj − zi , 0 ≤ zi ≤ ciui (xi ) , ∀i ∈ E

• When xi = 0, zi chosen s.t. ẋi ≥ 0

Theorem
If u(x) is Lipschitz in x, a unique solution exists.

G. Nilsson. “On Robust Distributed Control of Transportation Networks”. PhD Thesis. 5



Model - Phases

• Activation constraints to avoid collisions

• Ev = {cells entering junction v}
• Set of phases p ∈ Pv : Incoming cells to

junction v that can be activated simultaneously

• Local phase matrix P(v) = {0, 1}Ev×Pv

P
(v)
ip =

{
1 cell i belongs to p-th phase

0 otherwise

v1 v2

v3v4

Example
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P(v) =

1 0

1 0

0 1


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Model - Control with Phases

• Local control space for a node v , Uv = {ν(v) ∈ RPv
+ |

∑
p∈Pv

ν
(v)
p ≤ 1}

• ν(v) ∈ Uv , ν
(v)
p fraction of the cycle to phase p ∈ Pv

• T
(v)
0 = 1−

∑
p ν

(v)
p fraction of the cycle allocated to phase shifts.

Cycle length ∝ 1/T0

ẋ = λ+ (I − RT )z

x ≥ 0, 0 ≤ z ≤ u(x)

u(x) = CPν(x)

P =


P(v1)

P(v2)

. . .

P(vn)

 C =


c1

c2
. . .

ce

 u(x) =


u(v1)(x)

u(v2)(x)
...

u(vn)(x)


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Generalized Proportional Allocation (GPA) - Orthogonal Phases

• For all p, q ∈ Pv , pTq = 0 – Each lane only belongs to one phase

• Set of local cells x (v) = {xi | i ∈ Ev}
• Green light split in proportion to the queues in each phase

νq(x (v)) =

(
PT x (v)

)
q

κv +
∑

r∈Pv
(PT x)r

=

∑
i Piqxi

κv +
∑

i∈Ev xi
q ∈ Pv

• κv > 0 design parameter

Example

1

2

3

1

2

3

ν1 =
x1 + x2

κv + x1 + x2 + x3

ν2 =
x3

κv + x1 + x2 + x3

How about well-posedness and stability?
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GPA - General Case

For non-orthogonal phases, the GPA is a convex optimization problem for each

junction v :

ν(v)(x) ∈ argmaxµ∈Uv

∑
i∈Ev

xi log((P(v)µ)i ) + κv log(1− 1Tµ)

The previous stability theorem still holds, uniqueness still an open question

Observations:

• The controller only needs to know the incoming queue lengths ⇒ Decentralized,

Scalability

• The controller needs no information about R, λ or the network topology ⇒
Resilience, Scalability

• When xi grows large, 1− 1Tν will be small ⇒ Longer cycles during higher loads 9



GPA - Stability

Theorem (Stability)
For an exogenous arrival vector λ and a both inflow connected and outflow connected

R satisfying ai = (I − RT )−1λ ∈ int({z ∈ RE+ | 0 ≤ z ≤ CPν where ν ∈ U}) the

dynamical flow network with GPA control is stable, i.e., the queue lengths x(t) remains

bounded in time. Moreover, every solution x(t) approaches the set

X = {x ∈ RE+ | ci (Pν(x))i = ai for all i such that xi > 0} .

Observe: The GPA controller is able to stabilize the traffic network, whenever any

controller is able to do so. This without any knowledge about R or λ.

G. Nilsson and G. Como. “Generalized Proportional Allocation Policies for Robust Control of

Dynamical Flow Networks”. (arXiv:1907.02045)
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Micro-Simulations – LuST - Luxembourg Scenario

• Simulates all traffic in Luxembourg

during a full day

• About 200 signalized junctions

• We added sensors to measure queues

(50 m)

• Non-orthogonal phases ⇒ convex

optimization solved in real-time by

CVXPY

• Results compared to the standard

fixed-time plan that comes with the

scenario and a cyclic version of the

MaxPressure controller
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Luxembourg Scenario - Results

κ = 5
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κ = 10
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Total Travel Time: 54 100 h ⇒ 48 500 h

G. Nilsson and G. Como, “A Micro-Simulation Study of the Generalized Proportional Allocation Traffic

Signal Control”. (arXiv:1901.09976)
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Conclusions and Future Work

Presented a traffic light controller that:

• is able to stabilize the traffic network whenever it is possible

• does not require any routing information

• is decentralized and scalable

• is validated to work in micro simulator

Future work:

• Finite storage capacities, spill-back

• Saturation in measurements of queue-lengths

• Tuning of the parameter κ

• Dynamic route choice behavior, i.e., R depends on the state of the network

• Coordination between different junctions, green-waves
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