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Feedback Control to Improve Transportation Networks

e Growing number of sensors — more realtime
data — faster demand changes

e More possibilities for communication (V2V,
V2l ..)

e But the road network remains (almost) the
same

e Autonomous vehicles may not reduce the

traffic demand [Spieser et al., 2014]

Aim: Use feedback to improve the utilization of the

network resources



Global Optimality by Local Decisions?

Local measurements and control actions Global throughput optimality

Benefits: A decentralized and scalable control policy

Challenge: Use local control policies to optimize global objectives



Traffic Network as a Graph

A{/

o Capacited multigraph G = (V, &, C)

— V - set of junctions

— & - set of cells

— C =diag(c), ¢; - outflow capacity of cell
e External inflows \;
e Traffic volume x; in cell i



Model - Dynamics

e x; traffic volume in cell i

\; external inflow

¢; the cells outflow capacity

R routing matrix — R;; fraction of flow from / to j

z; outflow from cell i

o ui(x) < ¢ traffic signal control (Assumption: when x; > 0, z; = uj(x).)
Xi:/\i+ZRjiZj_Ziv 0<z < C,'LI,'(X,')7 Vie&
Jje€
e When x; =0, z chosen s.t. x; >0

Theorem
If u(x) is Lipschitz in x, a unique solution exists.

G. Nilsson. “On Robust Distributed Control of Transportation Networks”. PhD Thesis.



Model - Phases

e Activation constraints to avoid collisions
o &, = {cells entering junction v}

e Set of phases p € P,: Incoming cells to
junction v that can be activated simultaneously

o Local phase matrix P(") = {0, 1}&v*Pv

pv) _ 1 cell i belongs to p-th phase
P10  otherwise

Example




Model - Control with Phases

o Local control space for a node v, U, = {v") € R%" | > peP, y,gv) <1}

o V) € Z/{ u(v) fraction of the cycle to phase p € P,
o T, V) = -2 up ) fraction of the cycle allocated to phase shifts.
Cycle Iength x 1/Ty

x=A+({—-R")z
x>0, 0<z<u(x)

u(x) = CPv(x)

plv) c u()(x)
p(v2) < u(*2) (x)



Generalized Proportional Allocation (GPA) - Orthogonal Phases

o Forall p,geP,, p"q=0- Each lane only belongs to one phase
o Set of local cells x() = {x; | i € £,}
e Green light split in proportion to the queues in each phase

PTx(v) P x:
I/q(X(v)) _ ( )q _ ZI iqXi geP,
v+ 2 rep, (PTX),  Kv+ D ice, Xi

e K, > 0 design parameter

Example
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GPA - General Case

For non-orthogonal phases, the GPA is a convex optimization problem for each

junction v:

v(x) e argmax,,cy, Z xi log((PM 1)) + kv log(1 — 17 1)
ic&y

The previous stability theorem still holds, uniqueness still an open question

Observations:

e The controller only needs to know the incoming queue lengths = Decentralized,
Scalability

e The controller needs no information about R, A or the network topology =
Resilience, Scalability

o When x; grows large, 1 — 17 v will be small = Longer cycles during higher loads 9



GPA - Stability

Theorem (Stability)
For an exogenous arrival vector \ and a both inflow connected and outflow connected

R satisfying a; = (I — RT)™*\ € int({z € RS | 0 < z < CPv where v € U}) the
dynamical flow network with GPA control is stable, i.e., the queue lengths x(t) remains
bounded in time. Moreover, every solution x(t) approaches the set

X = {x € RY | ¢i(Pv(x)); = a; for all i such that x; > 0} .

Observe: The GPA controller is able to stabilize the traffic network, whenever any
controller is able to do so. This without any knowledge about R or A.

G. Nilsson and G. Como. “Generalized Proportional Allocation Policies for Robust Control of
Dynamical Flow Networks”. (arXiv:1907.02045)
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Micro-Simulations — LuST - Luxembourg Scenario

e Simulates all traffic in Luxembourg
during a full day

o About 200 signalized junctions

e We added sensors to measure queues
(50 m)

e Non-orthogonal phases = convex

optimization solved in real-time by
CVXPY

e Results compared to the standard
fixed-time plan that comes with the
scenario and a cyclic version of the

MaxPressure controller
11



Luxembourg Scenario - Results
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Total Travel Time: 54 100 h = 48 500 h

G. Nilsson and G. Como, “A Micro-Simulation Study of the Generalized Proportional Allocation Traffic
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Signal Control”. (arXiv:1901.09976)



Conclusions and Future Work

Presented a traffic light controller that:

is able to stabilize the traffic network whenever it is possible

does not require any routing information

is decentralized and scalable

is validated to work in micro simulator

Future work:

Finite storage capacities, spill-back

Saturation in measurements of queue-lengths

Tuning of the parameter k

Dynamic route choice behavior, i.e., R depends on the state of the network

Coordination between different junctions, green-waves
13
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