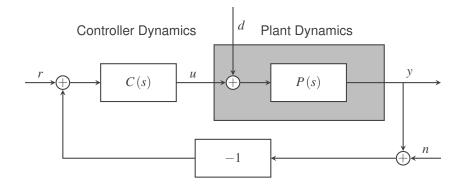
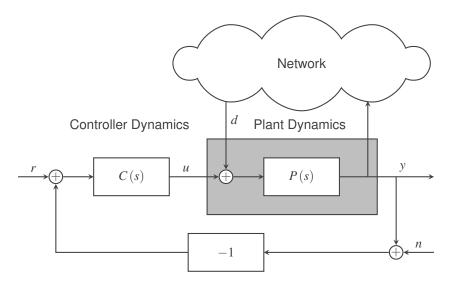
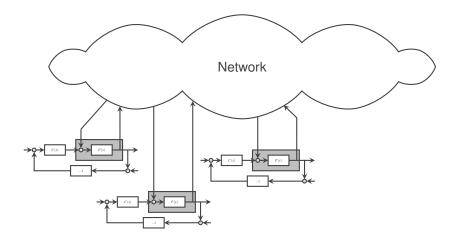
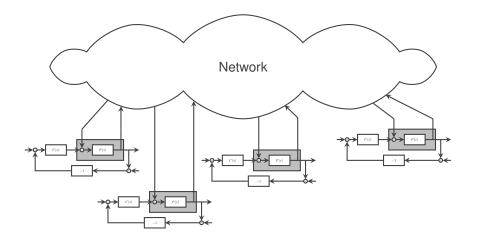


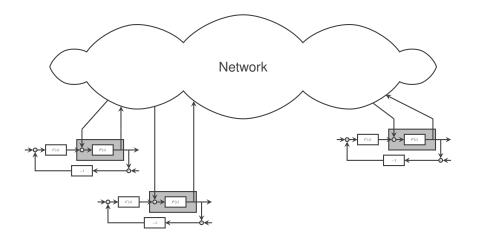
Conventional Control





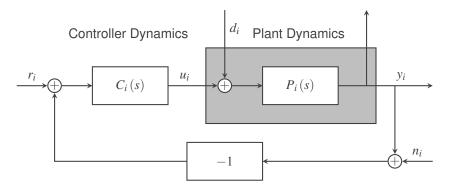






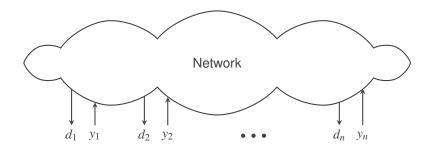
* Modular Design *

Component Model



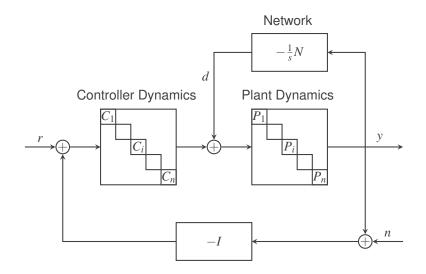
$$y_i(s) = \underbrace{\frac{P_i(s)}{1 + P_i(s) C_i(s)}}_{G_i(s)} d_i(s)$$

Network Dynamics



$$d(s) = -\frac{1}{s}Ny(s)$$

The System Model



Modular Stability Criteria

Component test:

If for each i ***test on** $G_i(s)^*$

Modular Stability Criteria

Component test:

```
If for each i *test on G_i(s)^*
```

Modular stability guarantee:

Then the system model is stable for all *class of matrices N*

Modular Stability Criteria

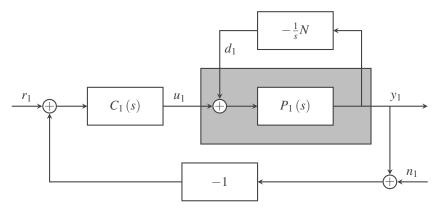
The question:

Given

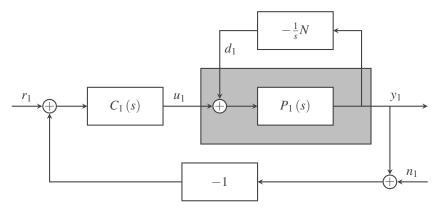
modular stability guarantee,

how to construct

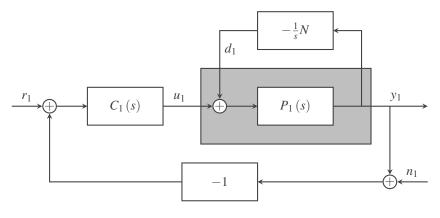
component test?



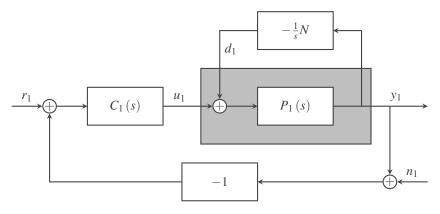
Class of matrices: $0 \le N \le 1$



$$y_{1}(s) = \underbrace{\frac{P_{1}(s)}{1 + P_{1}(s)C_{1}(s)}}_{G_{1}(s)} d_{i}(s)$$



$$\left(\forall s \in \overline{\mathbb{C}}_+\right) \quad \left(1 + \frac{1}{s}NG_1\left(s\right)\right) \neq 0$$



$$\left(\forall s \in \overline{\mathbb{C}}_+\right) \quad \left(\frac{1}{N} + \frac{1}{s}G_1\left(s\right)\right) \neq 0$$

Component test:

lf

$$(\forall s \in \overline{\mathbb{C}}_+) \quad \frac{1}{s}G_1(s) \not\in (-\infty, -1]$$

Component test:

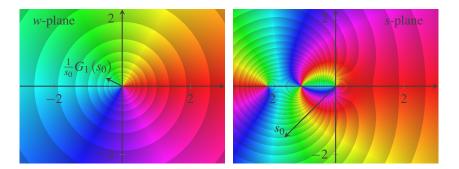
lf

$$\left(\forall s \in \overline{\mathbb{C}}_+\right) \quad \frac{1}{s}G_1\left(s\right) \notin \left(-\infty, -1\right]$$

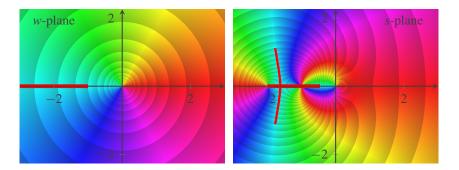
Modular stability guarantee:

Then the system model is stable for all

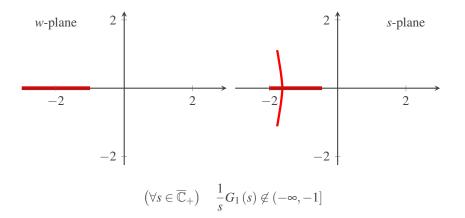
 $0 \le N \le 1$

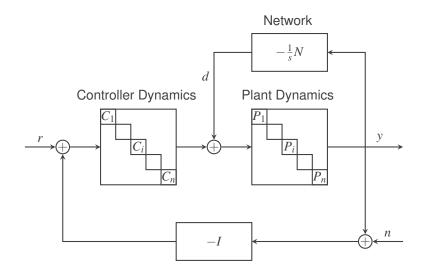


$$\left(\forall s \in \overline{\mathbb{C}}_+\right) \quad \frac{1}{s}G_1(s) \not\in (-\infty, -1]$$



$$\left(\forall s \in \overline{\mathbb{C}}_+\right) \quad \frac{1}{s}G_1(s) \not\in (-\infty, -1]$$





Component test:

If for all i

Modular stability guarantee:

Then the system model is stable for all

 $0 \leq N \leq I$

Component test:

If for all i

$$(\forall s \in \overline{\mathbb{C}}_+) \quad \frac{1}{s} G_i(s) \notin (-\infty, -1]$$

Modular stability guarantee:

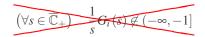
Then the system model is stable for all

 $0 \preceq N \preceq I$

Component test:

If for all *i*

Requires $G_1(s) = \ldots = G_n(s)$



Modular stability guarantee:

Then the system model is stable for all

 $0 \preceq N \preceq I$

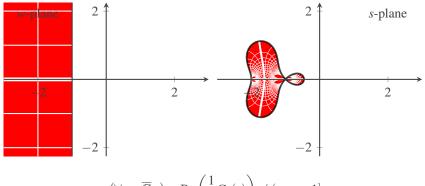
Component test:

If for all i

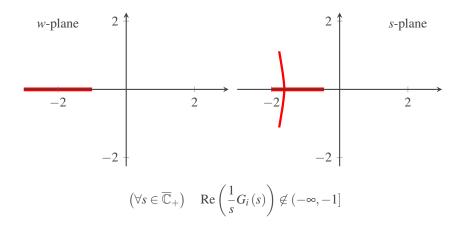
$$\left(\forall s \in \overline{\mathbb{C}}_+\right) \quad \operatorname{Re}\left(\frac{1}{s}G_i(s)\right) \notin (-\infty, -1]$$

Modular stability guarantee:

$$0 \leq N \leq I$$



$$(\forall s \in \overline{\mathbb{C}}_+) \quad \operatorname{Re}\left(\frac{1}{s}G_i(s)\right) \notin (-\infty, -1)$$



Better Decentralised Criteria?

Component test:

If for all $i \ge 2$

$$\left(\forall s \in \overline{\mathbb{C}}_+\right) \quad \operatorname{Re}\left(\frac{1}{s}G_i\left(s\right)\right) \not\in (-\infty, -1]$$

Modular stability guarantee:

$$0 \leq N \leq I$$

Better Decentralised Criteria?

Component test:

If for all $i \ge 2$

$$\left(\forall s \in \overline{\mathbb{C}}_+ \right) \quad \operatorname{Re}\left(\frac{1}{s} G_i\left(s\right) \right) \not\in (-\infty, -1]$$

Modular stability guarantee:

Better Decentralised Criteria?

Component test:

Given $h(s) \in \mathbf{PR}$, if for all i

$$\left(\forall s \in \overline{\mathbb{C}}_+\right) \quad \operatorname{Re}\left(\frac{h(s)}{s}G_i(s)\right) \notin (-\infty, -1]$$

Modular stability guarantee:

$$0 \leq N \leq I$$

Comments

- State-space methods
- Nyquist criteron
- Circuit theoretic methods
- Controller Design:
 - ℋ_∞ optimal control
 - Frequency response methods
- Frequency control problems:
 - Droop control
 - Automatic Generation Control (AGC)
 - Including delays, governor and turbine dynamics, ...

Comments

- Component test
 - State-space methods
 - Nyquist criteron
 - Circuit theoretic methods

• Controller Design:

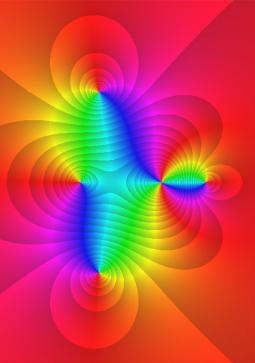
- ℋ_∞ optimal control
- Frequency response methods
- Frequency control problems:
 - Droop control
 - Automatic Generation Control (AGC)
 - Including delays, governor and turbine dynamics, ...

Comments

- Component test
 - State-space methods
 - Nyquist criteron
 - Circuit theoretic methods
- Controller Design:
 - *H*_∞ optimal control
 - Frequency response methods

• Frequency control problems:

- Droop control
- Automatic Generation Control (AGC)
- Including delays, governor and turbine dynamics, ...



More info: @ @richard_pates richardpates.com