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Evolutionary dynamics on graphs



Our goals

Define a novel framework to model evolutionary dynam-
ics, which allows for including control

Understand how the spreading time is influenced by the
graph topology and the control policy

Design a feedback control policy to speed up the
spreading process and test it on a real-world case study





Weighted graph

Connected graph

Node set V = {1, . . . , n}

Undirected links, symmetric weight matrix W ∈ Rn×n
≥0
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Evolutionary dynamics
Xi (t) ∈ {0, 1} state of node i at time t ∈ R≥0:

Xi (t) =

{
1 if i has the novel state at time t

0 if i has the old state at time t

Link {i , j} is activated by a Poisson clocks with rate Wij

If Xi (t) 6= Xj(t) =⇒ conflict: novel state wins w.p. β > 1/2

Wij

0

1

=⇒

1

1

w.p. β

w.p. 1− β
0

0



External control

A target node m(t) ⊂ V is selected1

Novel state is introduced in m(t) with rate u(t) ≥ 0

Simplest choice: constant control m(t) = m, u(t) = u.

Feedback control m(t) = m(X (t)), u(t) = u(X (t))
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1We can generalize it to a target set of nodes



Markov jump process

X (t) Markov jump process with X (0) = 01.

i

λ+i (x)

λ−i (x)

i

 λ+i (x) = (1− xi )
[
β
∑

j Wijxj + u(t)δi=m(t)

]
λ−i (x) = xi (1− β)

∑
j Wij(1− xj)

X = 1 unique absorbing state =⇒ novel state will spread

Two performance indexes: expected spreading time and cost:

τ = E [inf t : X (t) = 1] υ = E
[∫ ∞

0
u(t)dt

]



Three observables

A(t) =
∑

i Xi (t) number of nodes with the novel state

B(t) =
∑

i

∑
j Xi (t)(1− Xj(t))Wij boundary between the two states

C (t) = (1− Xm(t)(t))u(t) effective control in nodes with state 0
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A(t) = 5 B(t) = 28 C (t) = 0



General results

Performance guarantees (PG)

If B(t) + C (t) ≥ f (A(t)) > 0 for any t ≥ 0, then

τ ≤ β

(2β − 1)f (0)
+

1

2β − 1

n−1∑
a=1

1

f (a)

Fundamental limitation (FL)

Called Th and Jh the contributions to τ and υ each time A(t) = h,
it holds

E[Th] ≥ 1− E[Jh]

B(t)
.





Constant control

Upper bound on the expected spreading time (UB)

Let φ(a) : 1, . . . n − 1→ R be the minimum conductance. Then,

τ ≤ β

(2β − 1)u
+

1

2β − 1

n−1∑
a=1

1

φ(a)

Lower bounds on the expected spreading time (LB)

I: Let η(a) : 1, . . . n− 1→ R be the maximum expansiveness. Then,

τ ≥ 1

u
+

n−1∑
a=1

1

η(a)

II: Let ξ be the (weighted) bottleneck of the graph. Then, τ ≥ ξ−1.



Example I: fast spread on expander graphs

Complete Erdős-Rényi



Example I: fast spread on expander graphs

, UB + LB I =⇒ fast spread: τ = Θ(ln n)
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Example II: slow spread on stochastic block models



Example II: slow spread on stochastic block models

, The fundamental limit allows fast spread

/ Constant control: UB + LB II =⇒ slow spread: τ = Θ(n)
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Example III: slow spread on rings



Example III: slow spread on rings

/ FL =⇒ slow spread for any control policy

τ ≥ n − υ
2υ

∈ Θ(n)
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To sum up...

, If the topology ensures fast spread with constant control...

...we reached our goal!

/ If the fundamental limitation does not allow fast spread...

...there is no solution!

⇒ If the fundamental limitation allows fast spread, but constant control
fails...

...we need to improve the control!





Feedback control policy

Avoid waste: m(t) moved in a random node with state 0
=⇒ no optimization on m(t) (, computationally good!)

Contrast slowdowns: velocity of the process proportional to B(t)
=⇒ u(t) should compensate when B(t) is small

u(t) = u(A(t),B(t)) =

{
C − B(t) if A(t) 6= n, B(t) < C
0 else

Upper bounds on spreading time and cost under feedback control

τ ≤ β

(2β − 1)C
+

1

2β − 1

n−1∑
a=1

1

max{φ(a),C}

υ ≤ β

(2β − 1)
+

1

2β − 1
|{a : φ(a) < C}|



Application of feedback control policy to SBMs

C < 1
2 −

1
n =⇒ control activates only at bottleneck

, Upper bounds =⇒ fast spread: τ ∈ Θ(ln n), υ ∈ Θ(1)
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Easy to control

500 1,0000

n

τ

Feedback controllable

800 1,6000

n

τ

Hard to control

500 1,0000

n

τ

Constant vs Feedback





Case study: Zika in Rwanda

Zika Alert in Rwanda since 2016 [CDC, accessed online September 26, 2019]



Case study: model parameters

Location connected within a certain distance. Threshold set to 11.7
km: max distance traveled by mosquitoes to lay eggs [Bogojevic et al.,

J.Amer.Mosq.Cont.Ass., 2007]

Activation rate w = 1/10. 10 days life-cycle of Aedes aegypti [CDC

Centers for Disease Control and Prevention, accessed online September 26, 2019]

Parameter Meaning Value

n Number of locations 1621
Wij Activation rate 0.1
β Evolutionary advantage 0.53
u Control rate (constant) 2
C Control parameter (feedback) 1.5
t Time unit day



Case study: results of numerical simulations

constant feedback
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, Same cost, performance improved: τ ↘ −56%, p-value<< 0.001



Conclusions and future works
Analytical tractable model for controlled evolutionary dynamics

, General results to bound spreading time and control cost

, For some networks, constant control guarantees fast spread

, Feedback control can strongly improve the performance

Current/future work

Look for an optimal control strategy

Use our tools to tackle different problems (e.g., slow the spread)

More details can be found in...

Fast Diffusion of a Mutant in Controlled Evolutionary Dynamics, IFAC Papers
OnLine 50-1, pp. 11908–11913, 2017

Controlling Evolutionary Dynamics in Networks: A Case Study, IFAC Papers
OnLine 51-23, pp. 349–354, 2018

Fast Spread in Controlled Evolutionary Dynamics, Working Paper
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