On imitation dynamics in potential population games

Lorenzo Zino (joint work with G. Como and F. Fagnani)

Network Dynamics in the Social, Economic, and Financial Sciences — Turin, Italy

November 05, 2019

university of groningen

Learning and evolution in games

- Learning in Games
- Evolutionary Game Theory [Maynard Smith, Price, Cressman, Weibull, Sigmund, Hofbauer, Nowak, Sandholm,...]

(Noisy) best response dynamics

- Players have full information on all the actions and the rewards
- They update their action choosing the one that maximizes the current reward (w/ or w/o noise)
- In the literature, many results estabish convergence to Nash and evolutionary stable states

(Noisy) best response dynamics

- Players have full information on all the actions and the rewards
- They update their action choosing the one that maximizes the current reward (w/ or w/o noise)
- In the literature, many results estabish convergence to Nash and evolutionary stable states

not always realistic!

- In decision making, we have often limited information
- Information might be available but hard to process (e.g., big data)

Imitation dynamics

- Players have minimal information: no knowledge of the game structure and action space, no memory
- Each player can measure its own current reward and communicate with fellow players its current action and reward
- Players can update their action using the information from the communication network

Outline

Introduce **potential population games** and notion of Nash equilibria and evolutionary stable states

Define the learning mechanism: imitation dynamics

Deterministic imitation dynamics: convergence to Nash equilibria of the population game

Stochastic imitation dynamics: new emerging behaviors, meta-stability of evolutionary stable states

Population games

- Population $\mathcal{V} = \{1, \dots, n\}$
- $A = \{a, b, ...\}$ finite set of actions
- $y_v(t) \in \mathcal{A}$: action played by player v at time $t \in \mathbb{R}$
- $x_a(t)$ empirical frequency of a-players at time t

$$x_a(t) = \frac{1}{n} |\{y_v(t) = a\}|$$

• Reward $r_a(x)$ depends on empirical frequencies x (anonymous game)

$$x_a(t) = \frac{3}{8}$$

$$x_b(t) = \frac{2}{8}$$

Potential population games

Population game, reward r(x), is **potential** if $\exists \Phi : \mathcal{X} \to \mathbb{R}$

$$r_a(x) - r_b(x) = \frac{\partial}{\partial x_a} \Phi(x) - \frac{\partial}{\partial x_b} \Phi(x)$$

Example. Transportation network from origin O to destination D

- Action set $A = \{ \text{direct } O \rightarrow D \text{ paths} \}$
- x_a fraction of **drivers** on path $a \in A$
- Reward $r_a(x_a) = -d_a(x_a)$, delay on path a (increasing in x_a)
- Potential $\Phi(x) = -\sum_{a \in A} \Psi_a(x_a) (\Phi_a \text{ anti-derivative of } d_a)$

Nash equilibria and evolutionary stable states

Maximum reward vs average reward

$$r^*(x) = \max_{a \in \mathcal{A}} r_a(x), \qquad \bar{r}(x) = \sum_{a \in \mathcal{A}} x_a r_a(x)$$

• Critical points (of continuous game)

$$\mathcal{Z} = \{x \in \mathcal{X} : x_a > 0 \implies r_a(x) = \overline{r}(x)\}$$

• Nash equilibria $\mathcal{N} \subseteq \mathcal{Z}$ (of continuous game)

$$\mathcal{N} = \{ x \in \mathcal{X} : x_a > 0 \implies r_a(x) = \overline{r}(x) = r^*(x) \}$$

• Evolutonary stable states $S \subseteq \mathcal{N}$ (of continuous game)

$$S = \left\{ x \in \mathcal{X} : \exists \epsilon > 0, 0 < ||x - y|| < \epsilon \implies (y - x)^T r(y) < 0 \right\}$$

Nash equilibria in potential games

Folk theorems of evolutionary game theory [Sandholm 2010]

- $\bar{x} \in \mathcal{N} \iff \bar{x}$ stationary point of Φ
- \bar{x} isolated local maximum of $\Phi \implies \bar{x} \in \mathcal{S}$
- All maxima of Φ isolated: $\bar{x} \in \mathcal{S} \iff \bar{x}$ maximum of Φ

evolutionary stable state □ Nash equilibrium ○ critical point

Imitation dynamics

- Player v contacts (at random, over an undirected communication network) a fellow player w
- The **information** it can access: its own action a and reward $r_a(x)$; the action of the fellow player b and its reward $r_b(x)$
- It **updates** its action from a to b with probability $p_{ab}(x(t))$

Imitation dynamics (cont'd)

Assumption higher probability to update to increase reward

$$sign(p_{ab}(x) - p_{ba}(x)) = sign(r_b(x) - r_a(x))$$

Example I: proportional imitation rule:

$$p_{ab}(x) = \alpha [r_b(x) - r_a(x)]_+, \quad \alpha > 0$$

 \implies replicator equation [Taylor & Jonker,

1978; Schuster & Sigmund, 1983]

Example II: nonlinear imitation rule

$$p_{ab}(x) = rac{1}{2} + rac{1}{\pi} \mathsf{atan} \left(K_{ab}(r_b(x) - r_a(x))
ight)$$

$$K_{ab} = K_{ab}(x) > 0$$

Imitation dynamics for all-to-all communication

- Frequency of pairwise interactions of agents playing a and $b \propto x_a x_b$
- Overall rate of **transitions** from a to $b \propto x_a x_b p_{ab}(x)$
- For n large, finite time horizon, imitation dynamics ≈ deterministic system of ODEs [Kurtz, 1970]:

$$\dot{x}_a = x_a \sum_{b \in \mathcal{A}} x_b (p_{ba}(x) - p_{ab}(x)), \qquad a \in \mathcal{A}$$

Convergence to Nash (LZ, G. Como, F. Fagnani, Proc. CDC 2017)

Deterministic imitation dynamics, potential population game, $x_a(0) > 0, \ \forall \ a \in \mathcal{A}$

$$x(t) \to \mathcal{N}$$

Sketch of the proof

- Potential Φ cannot cannot decrease along trajectories
- ✓ **Stationary points** of $\Phi(x(t))$: ⑤ Nash \mathcal{N} , ⑥ $\mathcal{Z} \setminus \mathcal{N}$ critical points
- $otin The dynamics must pass through this neighborhood before touching <math>\bar{z}$ (Gronwall's inequality) \implies we **exclude** converge to $\mathcal{Z} \setminus \mathcal{N}$

Remark If $x_a(0) = 0$, restricted games

Imitation dynamics (ODEs)...

...vs. stochastic imitation

...not at all!

Stochastic imitation dynamics

Assumptions:

- i) all-to-all communication
- ii) full support $(x_a(0) > 0)$
- iii) initial condition interior $(x_a(0)/n \rightarrow 0)$
- iv) finite number of critical points of Φ
- v) if $|\mathcal{A}| \geq 3$ all critical points are maxima or minima (no saddle points)

Convergence to ESS (LZ, G. Como, F. Fagnani, Proc. ECC 2018)

Potential population game, assumptions i)–v). Then, for any $\delta>0$ there exist $C_1, C_2\geq 0$ such that

$$x(t) \in \mathcal{B}_{\delta}(\mathcal{S}), \qquad \forall t \in [C_1 n \ln n, e^{C_2 n}],$$

with high probability as $n \to \infty$, where $\mathcal{B}_{\delta}(\mathcal{S})$ is the δ -neighborhood of the set of evolutionary stable states.

Sketch of the proof

- ☑ Far from critical points, we use ODE [Kurtz, 1970] ⇒ imitation dynamics converges to the neighborhood of Nash (w.h.p.)
- ☑ In the neighborhood of ESS (maxima of the potential), an exponentially-long time is needed to decrease Φ (w.h.p.)
- In the neighborhood of Nash non ESS (minima of the potential), optional stopping Theorem yields exit time from the neighborhood in kn ln n (w.h.p.)

Generalization? Numerical simulations

Conclusions and future works

Imitation dynamics in potential population games

- © Deterministic dynamics: convergence to Nash
- © Stochastic dynamics: meta-stability of evolutionary stable states
- © Simulations suggest extension (saddle points, non-all-to-all)

Current/future work

- ► Analysis of non-all-to-all communication
- Extend results for stochastic imitation (saddles, non isolated Nash)
- Beyond potential population games

More details can be found in...

- On imitation dynamics in potential population games, Proc. 56th Annual Conference on Decision and Control, pp. 757–762, 2017
- On stochastic imitation dynamics in large-scale networks, Proc. European Control Conference, pp. 2176–2181, 2018

Thank you for your attention!

Lorenzo Zino
Fac: Science and Engineering
University of Groningen
lorenzo.zino@rug.nl

Giacomo Como

Dep. Mathematical Sciences
Politecnico di Torino
Dep. Automatic Control
Lund University
giacomo.como@polito.it

Fabio Fagnani
Dep. Mathematical Sciences
Politecnico di Torino
fabio.fagnani@polito.it

This work has been partially supported by

