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Learning and evolution in games

Learning in Games

Evolutionary Game Theory [Maynard Smith, Price, Cressman, Weibull,

Sigmund, Hofbauer, Nowak, Sandholm,...]



(Noisy) best response dynamics

Players have full information on all the actions and the rewards

They update their action choosing the one that maximizes the
current reward (w/ or w/o noise)

In the literature, many results estabish convergence to Nash and
evolutionary stable states



(Noisy) best response dynamics

Players have full information on all the actions and the rewards

They update their action choosing the one that maximizes the
current reward (w/ or w/o noise)

In the literature, many results estabish convergence to Nash and
evolutionary stable states

not always realistic!

/ In decision making, we have often limited information

/ Information might be available but hard to process (e.g., big data)



Imitation dynamics

Players have minimal information: no knowledge of the game
structure and action space, no memory

Each player can measure its own current reward and communicate
with fellow players its current action and reward

Players can update their action using the information from the
communication network



Outline

Introduce potential population games and notion of
Nash equilibria and evolutionary stable states

Define the learning mechanism: imitation dynamics

Deterministic imitation dynamics: convergence to Nash
equilibria of the population game

Stochastic imitation dynamics: new emerging behav-
iors, meta-stability of evolutionary stable states



Population games

Population V = {1, . . . , n}

A = {a, b, . . . } finite set of actions

yv (t) ∈ A: action played by player v at time t ∈ R

xa(t) empirical frequency of a-players at time t

xa(t) =
1

n
|{yv (t) = a}|

Reward ra(x) depends on empirical frequencies x (anonymous game)

v yv (t) = a

xa(t) = 3
8

xb(t) = 2
8

xc(t) = 3
8



Potential population games
Population game, reward r(x), is potential if ∃Φ : X → R

ra(x)− rb(x) =
∂

∂xa
Φ(x)− ∂

∂xb
Φ(x)

Example. Transportation network from origin O to destination D

O D

a

xa

da(xa)

Action set A = {direct O → D paths}

xa fraction of drivers on path a ∈ A

Reward ra(xa) = −da(xa), delay on path a (increasing in xa)

Potential Φ(x) = −
∑

a∈AΨa(xa) (Φa anti-derivative of da)



Nash equilibria and evolutionary stable states

Maximum reward vs average reward

r∗(x) = maxa∈Ara(x), r̄(x) =
∑
a∈A

xara(x)

Critical points (of continuous game)

Z = {x ∈ X : xa > 0 =⇒ ra(x) = r̄(x)}

Nash equilibria N ⊆ Z (of continuous game)

N = {x ∈ X : xa > 0 =⇒ ra(x) = r̄(x) = r∗(x)}

Evolutonary stable states S ⊆ N (of continuous game)

S =
{
x ∈ X : ∃ ε > 0, 0 < ||x − y || < ε =⇒ (y − x)T r(y) < 0

}



Nash equilibria in potential games

Folk theorems of evolutionary game theory [Sandholm 2010]

x̄ ∈ N ⇐⇒ x̄ stationary point of Φ

x̄ isolated local maximum of Φ =⇒ x̄ ∈ S

All maxima of Φ isolated: x̄ ∈ S ⇐⇒ x̄ maximum of Φ

xa

Φ(x)

xa

Φ(x)

xa

Φ(x)

xa

Φ(x)

• evolutionary stable state 2 Nash equilibrium O critical point



Imitation dynamics

Player v contacts (at random, over an undirected communication
network) a fellow player w

The information it can access: its own action a and reward ra(x);
the action of the fellow player b and its reward rb(x)

It updates its action from a to b with probability pab(x(t))

v

w



Imitation dynamics (cont’d)

Assumption higher probability to update to increase reward

sign(pab(x)− pba(x)) = sign(rb(x)− ra(x))

Example I: proportional imitation rule:

pab(x) = α[rb(x)− ra(x)]+, α > 0

=⇒ replicator equation [Taylor & Jonker,

1978; Schuster & Sigmund, 1983]

Example II: nonlinear imitation rule

pab(x) =
1

2
+

1

π
atan (Kab(rb(x)− ra(x)))

Kab = Kab(x) > 0

rb − ra

pab

rb − ra

pab



Imitation dynamics for all-to-all communication

Frequency of pairwise interactions of agents playing a and b ∝ xaxb

Overall rate of transitions from a to b ∝ xaxbpab(x)

For n large, finite time horizon, imitation dynamics ≈ deterministic
system of ODEs [Kurtz, 1970]:

ẋa = xa
∑
b∈A

xb(pba(x)− pab(x)), a ∈ A

Convergence to Nash (LZ, G. Como, F. Fagnani, Proc. CDC 2017)

Deterministic imitation dynamics, potential population game,
xa(0) > 0, ∀ a ∈ A

x(t)→ N



Sketch of the proof

2� Potential Φ cannot cannot decrease along trajectories

2� Stationary points of Φ(x(t)): , Nash N , / Z rN critical points

2� Every critical point z̄ ∈ Z rN is surrounded by an interior
neighborhood with potential greater than Φ(z̄)

2� The dynamics must pass through this neighborhood before touching z̄
(Gronwall’s inequality) =⇒ we exclude converge to Z rN

Remark If xa(0) = 0, restricted games



Imitation dynamics (ODEs)...
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...vs. stochastic imitation
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...not at all!
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Stochastic imitation dynamics
Assumptions:

i) all-to-all communication

ii) full support (xa(0) > 0)

iii) initial condition interior (xa(0)/n→ 0)

iv) finite number of critical points of Φ

v) if |A| ≥ 3 all critical points are maxima or minima (no saddle points)

Convergence to ESS (LZ, G. Como, F. Fagnani, Proc. ECC 2018)

Potential population game, assumptions i)–v). Then, for any δ > 0
there exist C1,C2 ≥ 0 such that

x(t) ∈ Bδ(S), ∀t ∈ [C1n ln n, eC2n],

with high probability as n→∞, where Bδ(S) is the δ-neighborhood
of the set of evolutionary stable states.



Sketch of the proof
2� Far from critical points, we use ODE [Kurtz, 1970] =⇒ imitation

dynamics converges to the neighborhood of Nash (w.h.p.)

2� In the neighborhood of ESS (maxima of the potential), an
exponentially-long time is needed to decrease Φ (w.h.p.)

2� In the neighborhood of Nash non ESS (minima of the potential),
optional stopping Theorem yields exit time from the neighborhood in
kn ln n (w.h.p.)



Generalization? Numerical simulations
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Conclusions and future works
Imitation dynamics in potential population games

, Deterministic dynamics: convergence to Nash

, Stochastic dynamics: meta-stability of evolutionary stable states

, Simulations suggest extension (saddle points, non-all-to-all)

Current/future work

� Analysis of non-all-to-all communication

� Extend results for stochastic imitation (saddles, non isolated Nash)

� Beyond potential population games

More details can be found in...

b On imitation dynamics in potential population games, Proc. 56th Annual
Conference on Decision and Control, pp. 757–762, 2017

b On stochastic imitation dynamics in large-scale networks, Proc. European Control
Conference, pp. 2176–2181, 2018
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