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Mattia Bergomi - Deep learning and Group equivariant (non-expansive) 
operators – Practice. 
Artificial intelligence and deep learning are among the most successful strategies to tackle 
scientific questions and develop technical applications. However, if deep networks outclass 
humans in finding optimal features to solve a huge variety of tasks, their architectures are 
growing more and more complex and oftentimes as task-specific as hand-crafted features used 
to be. Furthermore, the representation of the data learnt by these models is increasingly 
complex, making their internal functionalities unintelligible to human eyes. One strategy to 
better control and understand artificial neural networks is to constrain them. Generally, this is 
done by forcing the solutions adopted by the machine to respect symmetries. We will show how 
the theory developed in [1] can be used to inject knowledge in state-of-the-art deep learning 
models, and give a first example of a deep networks, whose features are constrained to different 
subgroups of the group of isometries. 

References: 
[1] Bergomi MG, Frosini P, Giorgi D, Quercioli N. Towards a topological–geometrical theory of 
group equivariant non-expansive operators for data analysis and machine learning. Nature 
Machine Intelligence, vol. 1, n. 9, pages 423–433 (2 September 2019). 
Full-text access to a view-only version of this paper is available at the link https://rdcu.be/bP6HV . 

Ginestra Bianconi  - Emergent Hyperbolic Network Geometry and Dynamics  
Simplicial complexes naturally describe discrete topological spaces. When their links are 
assigned a length they describe discrete geometries. As such simplicial complexes have been 
widely used in quantum gravity approaches that involve a discretization of spacetime. Recently 
they are becoming increasingly popular to describe complex interacting systems such a brain 
networks or social networks. In this talk we present non-equilibrium statistical mechanics 
approaches to model large simplicial complexes. We propose the simplicial complex model of 
Network Geometry with Flavor (NGF), we explore the hyperbolic nature of its emergent 
geometry and we reveal the rich interplay between Network Geometry with Flavor and 
dynamics. We investigate the percolation properties of NGF using the renormalization group 
finding KTP and discontinuous phase transitions depending on the dimensionality simplex. We 
also present results   on the synchronization properties of NGF and the emergence of frustrated 
synchronization which shed new light on recent results on dynamics of neuronal cultures 
forming neuronal networks of  different dimension. 

Patrizio Frosini - Deep learning and Group equivariant (non-expansive) 
operators - Theory 
Artificial intelligence and deep learning are among the most successful strategies to tackle 
scientific questions and develop technical applications. However, if deep networks outclass 
humans in finding optimal features to solve a huge variety of tasks, their architectures are 
growing more and more complex and oftentimes as task-specific as hand-crafted features used 
to be. Furthermore, the representation of the data learnt by these models is increasingly 



complex, making their internal functionalities unintelligible to human eyes. One strategy to 
better control and understand artificial neural networks is to constrain them. Generally, this is 
done by forcing the solutions adopted by the machine to respect symmetries. We will show how 
the theory developed in [1] can be used to inject knowledge in state-of-the-art deep learning 
models, and give a first example of a deep networks, whose features are constrained to different 
subgroups of the group of isometries. 

References: 
[1] Bergomi MG, Frosini P, Giorgi D, Quercioli N. Towards a topological–geometrical theory of 
group equivariant non-expansive operators for data analysis and machine learning. Nature 
Machine Intelligence, vol. 1, n. 9, pages 423–433 (2 September 2019). 
Full-text access to a view-only version of this paper is available at the link https://rdcu.be/bP6HV . 

Ulderico Fugacci - Persistence-based Kernels for Data Classification 
In the last decades, topological data analysis and, specifically, persistent homology have plenty 
proven their capabilities in extracting from large and unorganized datasets stable and 
discriminative information. In spite of this, the retrieved topological descriptors need to further 
pass a "translation" process before being suitable for statistics and machine learning. In this talk, 
we will show how such a process can be achieved thanks to the introduction of a persistence-
based kernel aiming at endowing the space of persistent diagrams with an inner product. 
Moreover, supported by some applicative examples, we will quickly overview the various 
definitions of a kernel for persistent and multi-parameter persistent homology given in the 
literature. Joint work with R. Corbet, M. Kerber, C. Landi, and B. Wang. 

Vladimir Itskov - Convex sensing and directed complexes.  
Convex sensing, i.e. sensing by quasiconvex functions, naturally arises in neuroscience and other 
contexts. One example of a convex sensing problem is measuring the underlying dimension of 
data. A related problem is computing the ``nonlinear rank'', i.e. the minimal rank of a matrix 
modulo the action by the group of row-wise nonlinear monotone transformations.  A natural 
tool that captures the essence of convex sensing problems is directed complexes, which capture 
much of the relevant geometric information. For example, the nonlinear rank, as well as other 
geometric properties of data can be estimated from the homology of an associated directed 
complex. I will present recent results and conjectures about the directed complexes associated 
to some convex sensing problems. 

Dmitri Krioukov - Power Loss with Power Laws 
In big data art that network science is now a part of, one common task is to make reliable 
inferences from data, which is always finite. Perhaps the simplest example: Given a real-world 
network adjacency matrix, is the network sparse or dense? A more advanced one: Given a 
persistency diagram, what is the underlying topology? It appears to be not widely recognized 
that the first question cannot have any rigorous answer, while the rigorous answers to the 
second question started appearing only very recently and only under very special probabilistic 
assumptions. It is not surprising then that the question of whether a given network is power-law 
or not, has not been rigorously addressed at all, even though this question is so foundational in 
the history of network science. 
We review the state of the art in statistics where power laws are understood as regularly varying 
distributions that properly formalize the idea in network science that "power laws are straight 
lines in the loglog scale". There exists a multitude of power-law exponent estimators whose 
consistent behavior in application to any regularly varying data had been proven long before 



network science was born. In application to real-world networks these estimators tell us what 
we already know -- that many of these networks are scale-free. Yet applied to any data these 
estimators always report some estimates, and the nature of the infinite-dimensional space of 
regularly varying distributions is such that such estimates cannot be translated to any rigorous 
guarantees or hypothesis testing methodologies that would be able to tell whether the data 
comes from a regularly varying distribution or not. This situation is conceptually no different 
from the impossibility to tell whether a given finite data set is sparse or dense, or whether it 
comes from a finite- or infinite-variance distribution, or whether it shows that the system has a 
phase transition. All these questions can be rigorously answered only in the infinite data size 
limit, never achieved in reality. An interesting big open problem in data science is how and why 
we tend to make correct inferences about finite data using tools and concepts that are known 
to work properly only at infinity. 

Claudia Landi - Discrete Morse theory meets multiparameter persistence 
Discrete Morse theory permits reducing a cell complex to the critical cells of a gradient vector 
field. Critical cells carry all the relevant homological information about the input data. 
Multiparameter persistence is a promising tool in topological data analysis that still needs to 
maintain its promises due to its heavy computational burden and its theoretical intricacies. 
Recently, the reduction aspect of discrete Morse theory has been leveraged in connection to 
persistent homology  with the purpose  of  speeding up algorithms. From a different 
standpoint,  the number of critical cells  of a gradient vector field  consistent with a multi-
filtration and the Betti tables of its persistence module have been shown to be related to each 
other via inequalities. 
In this talk, we will review the previous results, showing  what dicrete Morse theory can tell us 
about multiparameter persistence. 

Mason Porter - Topological Data Analysis of Spatial Complex Systems  
TBA 
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Diego Alberici -  Annealing in Random Deep Boltzmann persistence 
In this short communication I will discuss the multilayer version of the Sherrington-Kirkpatrick 
model (MLSK), based on a joint work with A. Barra, P. Contucci, E. Mingione and on a 
forthcoming paper. In Statistical Mechanics the MLSK is a mean field model for spin glasses, 
where each spin variable interacts only with those lying in the next layer and in the previous 
one. The MLSK is known in Artificial Intelligence as Deep Boltzmann Machine with random 
interactions (rDBM). 
After introducing the MLSK model, I will show a lower bound for its quenched pressure in terms 
of standard SK models (one corresponding to each layer) suitably coupled in temperature. This 
lower bound is obtained by an interpolation method à la Francesco Guerra. Whether or not it 
coincides with the actual quenched pressure in the thermodynamic limit is an open question. 
Nevertheless the lower bound allows to identify a region of parameters - namely the noise 
variance β  and the relative sizes of the layers λ1, . . . , λK - where the quenched pressure of the 
MLSK coincides with the annealed one. A heuristic involving the replica symmetric functional 
suggests that the region we found could be the whole annealed region of the MLSK. In Machine 
Learning escaping the annealed region is mandatory for a  meaningful training of the DBM. A 
simple condition on the relative sizes of the layers λ1, . . . , λK will be shown in order to make the 
annealed region found for the rDBM as small as possible in the thermodynamic limit.  



Alessandro de Gregorio -  Weakly isometric finite metric spaces 
Finite metric spaces arise in many applicative problems and are often the main input used in 
topological data analysis. In this talk, we introduce a concept of weak isometry for finite metric 
spaces and we look for invariants for this relation. In particular, we consider the curvature sets 
introduced by Gromov to study the isometry of compact metric spaces and how they can be 
applied to the finite case. 

Marco  Guerra - Principled Network Skeletonization via Minimal Homology 
Bases 
The  homological  scaffold  leverages  persistent  homology  to construct a topologically-
informed skeleton of a weighted network. However, its crucial dependency on the choice of 
representative cycles hinders its ability to relate global features to local network constituents, 
unless one provides a principled way to make such a choice. We give here an implementation of 
a recent algorithm by Dey, Li and Wang to compute the minimal representatives of a basis of H1. 
We use these minimal bases to introduce a quasi-canonical version of the scaffold, called 
minimal. We shortly discuss its uniqueness properties, explore its potential for data analysis, and 
provide a statistical comparison between the minimal scaffold and previous constructions. From 
this comparison, we observe that, for a good range of graph metrics, the standard (and 
computationally cheap) scaffold is a good proxy of the (computationally expensive) minimal one 
for sufficiently complex networks. 

Tullia Padellini - Persistence Flamelets: topological invariants for scale 
spaces 
(work with Pierpaolo Brutti) In recent years there has been noticeable interest in the study of the 
“shape of data”.  Among the many ways a “shape” could be defined, topology is the most 
general one, as it describes an object in terms of its connectivity structure: connected 
components (topological features of dimension 0), cycles (features of dimension 1) and so on. 
There is a growing number of techniques, generally denoted as Topological Data Analysis or 
TDA for short, aimed at estimating topological invariants of a fixed object; when we allow this 
object to change with respect to a scale parameter, however, little has been done to investigate 
the evolution in its topology. In this work we define the Persistence Flamelet, a multiscale 
version of one of the most popular tool in TDA, the Persistence Landscape[1], which represents 
the topology of a scale space when taken as a whole.   
We characterize this new topological summary in a probabilistic framework, deriving a Law of 
Large Numbers and a Central Limit Theorem especially tailored for it.  We also provide a 
bootstrap algorithm to build confidence bands on this new object and we prove its validity. This 
strengthens the inferential use of our proposal, as it is instrumental in assessing the significance 
of topological features. 
Finally, we show its performance as both an exploratory and inferential tool, focusing on two 
famous classes of statistical problem deeply affected by the presence of a scale parameter: time 
series analysis, where the scale parameter is time, and kernel density estimation, where the 
scale parameter is the bandwidth. In the first case, we show how to build a two-sample test to 
evaluate differences in the topological structure of two dynamical systems. In the second case, 
we illustrate how the Flamelet can be though of an extension of SiZer [2] to explore the impact 
of the bandwidth of a kernel density estimator on its topology for every dimension of both the 
ambient space and the topological feature examined, and how it can be exploited in a heuristic 
procedure to select a “topology–aware” bandwidth.  
Objects and methods presented in this work are implemented in the freely available R-package 
pflamelet. 
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