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Classic Prophet Inequality

= PReed

Sequence of n agents with
independent valuations
Vi ~ Fi

Ticket for a concert

Theorem.
We can get %2 of the expected optimal welfare.

E.g.

- Post price = Median of the r.v. max v;
l

- Post pricep = % E (max vi)
l

- Sample all distributions and use max as threshold
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Wecanget 1 -0 (\/LE) of the optimal welfare.

Tight fixed threshold algorithm recently found
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Set M with m heterogeneous items
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Sequence of n agents with
independent valuations
Vi ~ Fi

vi: 2M - IR+

v;(S) is valuation of set S € M



Results (informal)

Theorem. [Correa and Cristi, 22+]

If there are no complementarities between items, then there is an
. . 1 .
online policy that gets . of the optimal welfare.

Theorem. [Correa, Cristi, Fielbaum, Pollner, Weinberg, IPCO’22]

If nobody wants more than d items, then there are item prices that
1 :
guarantee EOf the optimal welfare (and we can compute them).



Online combinatorial auction
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n agents with
monotone independent valuations

v ~ Fi Vi 2M - ]R+

m heterogeneous items



Online welfare

@ ‘ If agent i gets the set ALG;
8@ we want to maximize

/ E(ALG) = E (Z vi(ALGi)>

}
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Incentive Compatible Dynamic Program

Optimal online solution:

Ve (R) =0
Vi(R) = E ((max (v (0) + Vira (R\ X0} )

When set R is available, offer agent i per-bundle prices
pi(X,R) = Vi1 (R) = Viyy(R\ X)

If the agent maximizes utility, then she selects the same as the DP:

max{v;(X) — pi(X, R)} = max{v;(X) + Vip1 (R \ X)} = Vi1 (R)



Benchmark: Optimal offline welfare

E(OPT) = E ( _max z vi(Xl-)>

partition



Prophet Inequality

If agents arrive sequentially, is there a small number «
such that

a - E(ALG) = E(OPT) ?

It can be proved that in general a is at least superconstant,

_ 0 log(m)
‘T (loglog(m))




Subadditive valuations
(a.k.a. complement-free)

v(AUB) <v(4) + v(B)

Gross-substitutes €& Submodular € Fractionally-subadditive € Subadditive



Subadditive valuations

Offline:

Theorem. [Feige STOC'06]
If valuations are deterministic, we can find in polynomial time a 2-approximation.

Theorem. [Feldman, Fu, Gravin, Lucier STOC’13]
Simultaneous First-Price auctions result in a 2-approximation.

Online:

Theorem. [Dutting, Kesselheim, Lucier FOCS 20]
There is an O(loglog m) Prophet Inequality.



Theorem. [Correa and Cristi 2022+]
For every € > 0, if valuations are subadditive, thereisa (6 + ¢€)
Prophet Inequality, i.e., there is an online algorithm such that

(6 + £) - E(ALG) = E(OPT)



Connection to single item
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Ticket for a concert Sequence of n agents with independent valuations v; ~ F;

Theorem. We can get %2 of the expected optimal welfare.

- Sample all distributions and use max as threshold

P & ¢ el & ¢ @

- n pairs of numbers.

0



Connection to single item

Theorem. We can get %2 of the expected optimal welfare.
- Sample all distributions and use max as threshold

- n pairs of numbers.
(say k largest come from ﬁ} Zﬁm @ @ q} Z[j} ﬁ} ﬂP ﬁ}
different distributions)

Blue box contains max w.p. 1/2
- ALG gets max if max is in blue box and second max is not. Prob=1/4.

Blue box contains second max but not max w.p. 1/4.
- ALG gets second max (or better) if max and second max are in blue box and third max is not. Prob=1/8.

Blue box contains third max but not max nor second max w.p. 1/8.
- ALG gets third max if max, second max, and third max are in blue box, and fourth max is not. Prob=1/16.



Random Score Generators (RSG)

Imagine we could ask each agent how much they like each item
Formally, imagine there are functions D;: V; - A(RY)

Valuation v;

— Random vector of scores

D, El — Si 2 bj si ~ Di(vy)



Algorithm

Simulate valuations v; and scores (5{]) ~ D;(v)) True valuations v; and scores (si,j) ~ D;(v;)
QO 0O o 9 o @O mO o) {J,\”\O o)

Give it to first
o Set threshold agent such that
r__ / =
T; = maxs;; sij > Ty



Mirror Lemma. For every agent i,

E(v;(ALG;)) = % E (Ui ({f: Si,j = max {TJ"'TJ'”}}))

!

Where T and T;" are two independent samples of maxs; ;
ax sy,



B (416)) 2 5+ B (v ({jisy > max (17,77} )
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w Is available if nobody beats the threshold, T} > T}’

. . . / r
f i getstheitemifs; ; > T; = T;



Key observation

Set of available items
and set of allocated
items have the same

distribution

T <T]

(max S;; < maxs; j)
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Lemma 2. There exist RSGs such that

z E (vi ({i:51; > max {T/,TJ-”}})) > 5 Jlr — E(OPT)

i

The proof uses a fixed-point argument.
Intuitively: we design a simultaneous auction with PoA 3 + &, where
each agent gets this set, and we take the equilibrium bids



Thus... for subadditive valuations

Theorem’.
For every € > 0, there are RSGs such that

(6 + £) - E(ALG) = E(OPT)

* Pricing implementation (Dynamic Program):
* Uses item bundling
* Uses dynamic pricing.

* Question: What if we cannot?



Demands of size d

QORI W

Theorem. [Correa, Cristi, Fielbaum, Pollner, Weinberg, IPCO’22]
If demands are of size at most d, there are item prices such that

(d+ 1) -E(ALG) = E(OPT)

and this is best possible. Moreover, we can compute them in
polynomial time.



Matching: d = 2

Edges come one-by-one
Select matching on the fly

Maximize expectation




Algorithm:

e = (u,w) arrives:
e buys u and w as long as
they are not sold yet and

Ve = Put Pw

ALG(p) resulting matching
OPT optimal matching



Theorem. There is a vector of prices p € RY s.t. for any arrival order,

3-E(ALG(p)) = E (OPT)



To bound OPT, imagine that edges in OPT had to pay the prices

IE(OPT)=IE( D) (ve—pu—pw>>

uev(OPT) eceO0PT

sZpu+zIE([ve—pu—pw]+)

uev eek

= z Pu + z z.(p)

uev eek



E(ALG(p)) = revenue + utility

=IE< z pu>+IE( z (ve—pu—pw)>

u€evV (ALG(p)) e€ALG(p)

We want balanced prices:
“high enough” so we get good revenue, yet “low enough” so
buyers buy (and get good utility)



To lower bound E(ALG (p)), utility is the tricky part:
N R R ——

Recall that ALG(p) takes e = (u, w) iff
* the two nodes are free, and

“‘---....’\.
R %, * Ve =Pyt Pw
: ° .
"., o . R, = set of remaining vertices when e arrives
*

Re ™
R, is independent of v,



Utility = z IE':(I{u,WERe} Ve — Dy — pw]+)

e=(u,w)€eE

= Z P(U;W € Re) ’ IIE':([Ue — Pu — pw]+)

e=(uw)€eE

vV

P(uww & V(ALG(D))) - ze(P)

e=(u,v)EE

= IE( Z ze(p)>

u,W%V(ALG(P))



E(ALG(p)) = revenue + utility

= 15( z pu>+IE< Z (ve—pu—pw)>
uev(ALG(p)) e€ALG(p)

> E( Z pu) +[E< Z Ze(P))
uev(ALG(p)) e=(uw):uweV(ALG(p))

> g{ngig{z;?u+ Z ze(p)}

UgEX ecE(X)



E(OPT) < z Dy + z z.(p)
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What if we set prices? Py = 2 z.(p) o =




We want prices

Py = z z.(p)

eed(u)

Define the operator: Y, (p) = 2365(u) Zo(p)

Brouwer’s thm = there are prices p = Y (p)

Recall that  z(p) = E([ve — py — pw 14)



Can we compute p? Brouwer’s only guarantees existence.

YES! For € > 0, we can compute p in polynomial time s.t.

(3+¢)-E(ALG(p)) = E(OPT)

Umax

te pin ti l ( 1—B) :
E(OPT)’ we Can compute p In time poly m,n,g, , using

For € > 0, m edges, n nodes and a bound B >

poly (m, n,i,B) samples.



Sample: Calculate “empirical” i:

(ve(.s)) r ) AI(I,S) (p) = Z [v.gS) — Pu— pw]_l_
e

ecd(u)

|
Repeatfors =1, ..., S

— ) A;/erage ) . For large S, i is good approx
Y = §Z§=1 1/)(5) (concentration bound)
Find

A

convex QP

m—) p =9P(p)



Example
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M| =d %}X %P E(OPT) =1+4+d(1 —¢)
E(ALG(p)) < 1



SUMMARY

We show a (6 + €)-approx. for OCA with subadditive valuations

= Algorithm uses samples to “protect” items. We use simple scores to represent complex
valuation functions and use a fixed-point argument to show existence of good scores.

= We improve upon the O (loglog m)-approx solving an important open question.

We find the best possible prices for online combinatorial auctions with random valuation
parametrized by d

= Existence follows by a fixed-point argument. Polynomial time computation follows by
carefully analyzing the underlying function and classic optimization tools.

= The result improves upon some recent results in the literature:

* Best-known factor of (4d — 2) [Diitting, Feldman, Kesselheim, Lucier, FOCS’20]

* Single-minded and random valuations generalizes Prophet Inequality for intersection of d partition
matroids. Best known approximation is e(d — 1). [Feldman, Svensson, Zenklusen, SODA’16]

* For Prophet Inequality for matching (d = 2) a 3-approx. is known, and a 2.96-approx. using adaptive
thresholds (prices). [Gravin, Wang, EC’19], [Ezra, Feldman, Gravin, Tang, EC’20]



