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The model

Linear time-invariant dynamics:

x(t + 1) = Ax(t) + Bu , t ∈ N ,

I A in Rn×n
+ and B in Rn×m

+ are nonnegative
matrices;

I u in Rm is a constant input vector;
I x(t) in Rn represents the system state

vector at time t ≥ 0.

I R = {1, 2, . . . , n} (regular) agents
I S = {n+ 1, n+ 2, . . . , n+m} exogenous

sources (stubborn agents)

G =

(
A B
0 I

)
directed graph G = (R∪ S, E)

E = {(i, j)|Gij > 0}
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Friedkin-Johnsen model

x(t + 1) = [λ]Wx(t) + (I − [λ])x(0) .

[λ] = diag (λ1, λ2, . . . , λn), A = [λ]W , B = (I − [λ]).

Assumption 1: A has spectral radius ρ(A) < 1.

lim
t→∞

x(t) = Mu ,

M = (I − A)−1B .

Assumption 2: the graph G is weakly connected.

Defense-attack: u has the form
u = [ν]−1/2ω,

I ω ∈ Rm exogenous input (e.g. bot in�uence)
I ν ∈ Rm

++ defense intervention (e.g. mitigating factor)
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Adversarial optimization problem

Φ(ν, ω) = ‖x‖2 = ω> [ν]−1/2 H [ν]−1/2 ω , H = M>M ,

min
ν∈Qc

max
‖ω‖2≤1

Φ(ν, ω) .
(1)

Let d ∈ Rm
++, c ≥ 1>d. The set of admissible interventions is

Qc = {ν ∈ Rm | νi ≥ di, 1>ν ≤ c}.

Adversarial Perturbations of Opinion Dynamics in Networks [1]

Set νiu2
i = ω2

i , c = n, and assume ν > 0, then min-max problem results

min
ν>0∑
i νi=n

max
u∈Rn

‖[ν]1/2u‖2=1

u>Hu .

[1] Gaitonde, Jason, Jon Kleinberg, and Eva Tardos. "Adversarial perturbations of opinion dynamics in networks." Proceedings of the 21st

ACM Conference on Economics and Computation. 2020.
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Example

R1 R2

0.4

0.2

0.4

S3 S4

0.3

0.1

0.6

A =

(
0.2 0.4
0.4 0

)
, B =

(
0.3 0.1
0 0.6

)
.
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Worst perturbation

De�ne the function φ : Qc → R as

φ(ν) = max
‖ω‖2=1

ω> [ν]−1/2 H [ν]−1/2 ω, ν ∈ Qc .

Lemma
Let d in Rm

++ and c ≥ 1>d. Then, for every ν inQc , we have

(i) φ(ν) = ρ
(
[ν]−1/2H [ν]−1/2

)
= ρ

(
M [ν]−1 M>

)
.

Moreover, if H is irreducible, then:

(ii) φ(ν) is strictly convex in ν.

min
ν∈Qc

max
‖ω‖2≤1

Φ(ν, ω) = min
ν∈Qc

ρ
(
M [ν]−1 M>

)
. (2)

ν∗(c) = argmin
ν∈Qc

ρ
(
M [ν]−1 M>

)
.
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Unbounded problem

min
ν∈Q0

c

φ(ν) , Q0
c = {ν ∈ Rm | νi > 0, 1>ν ≤ c} .

ν1 + ν2 = c

Q0
c

ν1

ν
2

8/15



Unbounded problem

min
ν∈Q0

c

φ(ν) , Q0
c = {ν ∈ Rm | νi > 0, 1>ν ≤ c} .

(ν0
1 , ν

0
2 )

ν1

ν
2

de�ne the centrality vector π = 1∑
i,j Hij

H1

Proposition
For every c > 0, we have that

ν0(c) = cπ, min
ν∈Q0

c

φ(ν) = φ(cπ) =
1>H1

c
.

I ν0
i (c) ∝ πi, example [0.328, 0.672];

I ν0
i (c) increasing in c.

8/15



High budget regime

ν0(c) ∈ Qc ⇐⇒ c ≥ c0 =
m

max
i=1

di
πi
.

d1

d2

c0

c
′

c
′′

ν1

ν
2
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High budget regime

ν0(c) ∈ Qc ⇐⇒ c ≥ c0 =
m

max
i=1

di
πi
.

d1

d2

c0

c
′

c
′′

ν1

ν
2

considering thatQc ⊆ Q0
c :

c ≥ c0 =⇒ ν∗(c) = ν0(c)

Theorem
For every d ∈ Rm

++ and c ≥ c0 we have

ν∗(c) = cπ, φ(ν∗(c)) =
1>H1

c
. (3)
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Saturated problem

1>d ≤ c < c0 =⇒ ν0(c) 6∈ Qc =⇒ ν∗i (c) = di for some i ∈ S .

ν∗(c) exhibits one or more components saturated to their lower bound level

d1

d2

c0
1>d

ν1

ν
2
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Saturated problem

φ(νU (c)) = min
ν∈QUc

φ(ν) ,
W = {i ∈ S | νi = di}, S = U ∪W
QUc = {ν ∈ Rm

++ | νi = di ∀i ∈ W, 1>ν ≤ c} .

d1
ν1

ν
2

W = {1} ⇒ ν1 = d1

U = {2} ⇒ ν2 = c − d1 .

Proposition
Fix d ∈ RW++. Then, for every c ≥ 1>, the solution νU (c) is completely described by these relations:{

νU (c) = (M>U
(
ρI −MW [d]−1M>W

)−1
MU1, d)

1>M>U
(
ρI −MW [d]−1M>W

)−1
MU1 = c − 1>d.

(4)
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d1

d2

c0

ν1

ν
2

Step 0:

c > c0 =⇒ ν∗(c) = ν0(c) .
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d1

d2

c0

c1

ν1

ν
2

Step 1: c = c0 =⇒ ∃i ∈ S s.t ν∗i (c) = πic = di .

de�neW0 = {i}, U0 = S\{i} ,

∃ 1>d < c1 < c0 s.t ν∗(c) = min
ν∈QU0

c

φ(ν) , for c ∈ (c1, c0] .
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d1

d2

c0

c1

ν1

ν
2

Step 2 and so on: c = c1 =⇒ ∃j ∈ U0 s.t ν∗j (c) = dj .

de�neW1 = {i, j},U1 = S\{i, j} ,

∃ 1>d < c2 < c1 s.t ν∗(c) = min
ν∈QU1

c

φ(ν) , for c ∈ (c2, c1] .
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Characterization of ν∗(c)

Theorem
Fix d ∈ Rm

++. Then,

I the function ν∗ : Qc → Rm
++ is continuous and (entrywise) non decreasing;

I there exists a �nite sequence of points c0 =
m

max
i=1

di
πi
> c1 > · · · > cs = 1′d

and subsets S ) U 0 ) U 1 ) · · · ) U s−1 such that

Uc =
{
S if c > c0

U k if ck+1 < c ≤ ck, k = 0, . . . , s − 1

ν∗(c) =

{
ν0(c) if c > c0

νU
k
(c) if ck+1 < c ≤ ck, k = 0, . . . , s − 1.
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Conclusions and future research

I iterative solution to calculate ν∗(c)
I sensitivity of ν∗(c) in c
I new notion of centrality π

I network with more components (delete Assumption 2)
I consider other system measures, e.g. polarization
I consider other resource constraints
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