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In a country far, far away...

e Estonian Parliament 2021:

— Sotsiaaldemokraatlik Erakond

— Eesti Reformierakond
— Isamaa
— Eesti Konservatiivhe Rahvaerakond
— Eesti Keskerakond
* Canyou order these

parties from left to right
on the political spectrum?



How many voters do we need to ask?

e Estonian Parliament 2021:
— Social Democratic Party (SDE)
— Estonian Reform Party (Reform)
— Pro Patria (PP)
— Conservative People's Party of Estonia (Con)
— Estonian Centre Party (Centre)

* v,: PP > Con > Reform > Centre > SDE
* v,: Reform > Centre > PP > SDE > Con
* v,: Centre > SDE > Reform > PP > Con
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SDE Centre Reform PP Con



Single-peaked preferences

* Setup:
— a set of m candidates C
— each voter ranks candidates from best to worst
— top(v): most preferred candidate of voter v

e Definition: a vote v is single-peaked (SP) wrt an
ordering < of candidates (axis) if it holds that:
—if top(v) <d < e, v prefers d to e
—ifa <b <top(v), v prefers b to a




Example: Estonian Parliament

* v,: PP > Con > Reform > Centre > SDE
* v,: Reform > Centre > PP > SDE > Con
* v,: Centre > SDE > Reform > PP > Con
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Example: Temperature

* Perfect water temperature?

+16  +20 +23 +25 +27

+30




Challenge

* A population of voters, with preferences
single-peaked on an axis < over C

—assume c, < ¢, < C3 <...<C,
 We sample a random voter and
ask her to report her ranking

* How many samples do we need to uniquely
identify the axis (up to a swap)w.p. 1 -07?
— the answer may depend on the distribution




Warm-up

Observation 1: each voter ranks c, or c_, last

Observation 2: there are 2™ votes s.p. on <

Best case: two votes may be enough
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Worst case: 2™ votes may not be enough

— there are 2™ votes over C\{c,, c,}
thatares.p.onc, <...<c, ,

— to each such vote, we can append c,c,, or c.c,
— from these votes, we cannot decide if the axis is

C; < C < ..<C

m-1

<Cm

or

C

m

<C < ..<Cp,q <C4




Understanding the worst case

How do we distinguish between
a<b<c<d<e<f andf<b<c<d<ex<a?

If all votes rank {a, f} in the last two positions,
we cannot
But suppose we have votes ...a, ...f, and ...fha

— i.e., in our set of votes there is no “cut” between
positions 1,2, 3,4 and 5, 6

— then b is “glued” to a

Lemma [DF'94]: we can identify the axis iff there no
cut between positions 1, ..., jand j+1, ..., m for any |

a b C d e f
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Average case: uniform distribution

2(<): the set of all votes s.p. on < (size of 2(<): 2™1)
7/(<): uniform distribution over 2(<)
How do we sample votes from 7/(<)?

Bottom up:

— last candidateis c, or ¢, w.p. 1/2

— if ¢, is last, then 2"9 |ast candidateisc, orc_, w.p. 1/2
— if ¢ is last, then 2" [ast candidateis c, or ¢, ,, w.p. 1/2
— etc.

— m-1 binary choices (left or right)

Note: both c,... and c ... are exponentially unlikely




Main result

e Theorem: For any o > 0, we can
identify the axis < using O(log 1/0) samples
from 7(<) w.p. atleast 1 - o

* Proof sketch:

— avote from Z(<) = a uniform random walk in 1D

— a sample of k votes admits a cut iff the respective k
random walks all meet at the same point

— Lemma (hard): with constant probability,
four random walks never meet

— Algorithm: draw O(log 1/0) lots of 4 votes each
* Empirically: 5 votes always suffice




Skewed distribution

* 7%,(<). skewed uniform distribution
(L w.p.p, Rw.p. 1-p)
e Theorem: Foranyo >0,andanyO<p<1

we can identify the axis < using O(log 1/9)
samples from 7 (<) w.p. at least 1 - ©

— skewed random walk

size)

* Dependence on p
(empirical): 1/(p(1-p))
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Random peak distribution
* Uniformly random peak distribution Z2(<):

— generate the vote top to bottom
— each candidate is equally likely to be ranked first
— then move left or right on < w.p. 1/2

e Theorem: Foranyo >0,
we can identify the axis < using O(log 1/0)
samples from Z2(<) w.p. atleast 1 - 0




Sampling pairwise comparisons

* Suppose we ask each voter about
one pair of candidates

— impossible to learn with certainty
— but possible to learn w.h.p., both for 7(<) and Z2(<)

e Theorem: Suppose that we sample pairwise
comparisons from 7Z(<). For any o > 0, we can
learn < w.p. at least 1 - 6 using O(m? log(m/9))
samples (and O(m*log(m/o)) for Z2(<))

— order candidates by number of wins
— we obtain {c,, ¢} <{c,, ¢, }<{c; C -} <..

— break “ties” moving from the center outwards
C, G C3
O @) o o




Two axes

Suppose there are two axes on C (<, and <))

Half of the votes come from U(<,),
half from U(<,)

— or, 80% and 20%

<,: political left-right axis

<,: conflictin Ukraine

Can we learn <, if <, is known?

Can we learn <, and <, if both are unknown?
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<y

One known, one unknown axis

Suppose <, is known, <, is unknown

If all endpoints of <, and <, are distinct,
we can discard votes s.p. on <,

But if <, and <, share one endpoint, we may be
unable to identify <, even given 2(<,)UZ(<,)

Which votes are s.p. on <,, but not on <,?
— exactly the votes in 2(<,) that rank b last

— but such votes are also compatible with
c<d<e<f<ax<b

b d e f .
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Two axes: results

* Theorem: For any o > 0, given <,, we can
identify <, using O(m log m/06) samples
from 1/2 x2/(<,)+ 1/2 x 7%(<,) w.p. at least 1 - ©
as longas <, , <, have 0 or 2 common endpoints

e Theorem: Foranyo >0, if m >4, we can
identify the pair of axes <, , <,
using O(m log m/0o) samples
from 1/2 x2/(<,)+ 1/2 x 7%(<,) w.p. at least 1 - ©
as longas <, , <, have 0 or 2 common endpoints




Future work
e Can we characterize distributions that enable
axis identification?

* Single-peakedness on richer graphs?

* Learning partial information about the axis?



