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Motivation: Games and Price of Anarchy

Consider agents interacting in some game
• Main questions: What kinds of outcomes arise? How “good” are 

they?
• Price of Anarchy: worst-case gap between social welfare at Nash 

compared to social optimum
In many/most interactions are repeated interactions and  participants 
use learning to figure out what works
• What do we mean by learning?
• What form of learning guarantees good outcome?
• What can we say about outcome of learning?



Example 1: traffic routing

• Traffic subject to congestion delays
• cars and packets follow shortest path
• Congestion game =cost (delay) 

depends only on congestion on edges



High Social Welfare: Price of Anarchy in Routing

Theorem  (Roughgarden-T’02):
In any network with continuous, non-decreasing cost 

functions and very small users

cost of Nash with 
rates ri for all i

cost of opt with 
rates 2ri for all i≤

Nash equilibrium: stable solution where no player had 
incentive to deviate.

Extra resource needed to guarantee good outcome at Nash

cost of worst Nash equilibrium
“socially optimum” cost

Price of Anarchy=



Example 2: serving packets

• Stream of packets that need 
serving

• servers have limited capacity

• Drop (or return) unsent packets, 
that need to get resend
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queues servers



Example 3: ad-auctions

• Repeatedly bidding for 
impression

• Limited by a budget for longer 
period
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Learning outcome: No-regret without stability 
(Hannan consistency)
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Simple behavioral assumption: no-regret learning: 
do at least as well as any single action with hindsight 

for each player i and each fixed action x:

�
𝑡𝑡

𝑢𝑢𝑖𝑖 𝑥𝑥, 𝑎𝑎−𝑖𝑖𝑡𝑡 ≤ �
𝑡𝑡

𝑢𝑢𝑖𝑖 𝑎𝑎𝑡𝑡 + 𝑜𝑜(𝑇𝑇)



Quality of Learning Outcomes: Price Anarchy
No-regret/Hannan consistency as a behavioral 
assumption

Price of Anarchy [Koutsoupias-
Papadimitriou’99]

𝑃𝑃𝑃𝑃𝑃𝑃 = m𝑖𝑖𝑖𝑖
𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁𝑁

∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑎𝑎)
𝑂𝑂𝑂𝑂𝑂𝑂
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Assuming no-regret learners in stable 
game: [Blum, Hajiaghayi, Ligett, Roth’08, 
Roughgarden’09]

𝑃𝑃𝑃𝑃𝑃𝑃 = lim
𝑇𝑇→∞

∑𝑡𝑡=1𝑇𝑇 ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑎𝑎𝑡𝑡)
𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂

Extends to even to repeated games with 
dynamically changing population 
assuming no-regret learners : [Lykouris, 
Syrgkanis, T’16]

No regret is a natural and 
strong enough assumption 
on what learners achieve→



Social Welfare of Learning Outcomes

Critical Assumption: new copy of the same game is 
repeated (no carryover effect between rounds other 
than through learning)

Is this reasonable?



Large population games: traffic routing

Morning rush-hour traffic
No carryover effect 
(except through the 
learning of the agents)

Second-by-second packet traffic
Packets take time to clear, 
dropped packets need to be 
resent in the next round



Price of Anarchy in Stateful Systems

• Not as well understood: do PoA-style bounds still hold with 
dependence between games in each round?

Questions for queuing application:
• How much extra capacity ensures good system performance despite 

selfish users
• Is no-regret learning a good enough way to learn in presence of 

dependence between rounds



Simple Model of Queuing
• Queue 𝑖𝑖 gets new packets with a 

Bernoulli process with rate 𝜆𝜆𝑖𝑖
• Server 𝑗𝑗 succeeds at serving a packet 

with probability 𝜇𝜇𝑗𝑗
• Each time step: each queue can send 

one packet to one of the servers to try 
to get serviced

• Server can process at most one packet 
and unserved packets get returned to 
queue

• Servers attempt to serve oldest packet

queues servers

Failed

𝜆𝜆𝑖𝑖

𝜇𝜇𝑗𝑗



Baseline Measure: Coordinated Queues

Assume queues and servers are sorted:
1 > 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛

1 ≥ 𝜇𝜇1 ≥ 𝜇𝜇2 ≥ ⋯ ≥ 𝜇𝜇𝑚𝑚 > 0

Theorem 0: necessary/sufficient condition for 
centralized stability:  for all k,

�
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 < �
𝑖𝑖=1

𝑘𝑘

𝜇𝜇𝑖𝑖

(Recall can only send one packet each round)

queues servers

𝜆𝜆𝑖𝑖

𝜇𝜇𝑗𝑗



Selfish Queuing: Price of Anarchy

Theorem 1 [Gaitonde-T ]: if queues use no-regret algorithms to select servers 
and for all 𝑘𝑘,

�
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 < 0.5�
𝑖𝑖=1

𝑘𝑘

𝜇𝜇𝑖𝑖

Then queue lengths/ages remain bounded in expectation.

Theorem 2 [Gaitonde-T]: If queues choose servers patiently, and for all 𝑘𝑘

then in every equilibrium, queue lengths/ages grow sublinearly. 0.63 = (𝑒𝑒 − 1)/𝑒𝑒

�
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 < 0.63�
𝑖𝑖=1

𝑘𝑘

𝜇𝜇𝑖𝑖



Plan for rest of the time

• Outline of the proof of Theorem 1: 
why is no-regret a useful condition

• Limitation of no-regret: 
example showing no-regret can be too myopic

• Theorem 2 comments: 
worst case example

• Directions of further research



Theorem 1 Proof Idea (using no-regret)

Technical tool: [Pemantle, Rosenthal ‘04]: random process satisfying
i. Sufficiently regular
ii. Negative drift when large

remains bounded in expectation for all times

Use potential function Φ where Φ ≈ ∑𝜏𝜏Φ𝜏𝜏
with  Φ𝜏𝜏 = # packets aged 𝜏𝜏 or older in the system

Φ remains bounded → all queues remain bounded (in expectation)

• No-regret + factor 2 slack → negative drift when queues have large backup



Why Φ and How No-Regret Helps

• Look at queues with packets at least 𝜏𝜏-old; they have priority
• Fix long window and look at best servers
• Either: i) many 𝜏𝜏-old queues send there throughout window 
Φ𝜏𝜏 decreases by a lot

𝜆𝜆𝑖𝑖
𝜇𝜇𝑗𝑗



Why Φ and How No-Regret Helps

• Look at queues with packets at least 𝜏𝜏-old; they have priority 
• Fix long window and look at best/fastest servers
• Either: i) many 𝜏𝜏-old queues send there throughout window 

decrease in queue size, OR
ii) they do not: 

had priority there so no-regret kicks in: 
Any queue with 𝜏𝜏-old packets would have 
regret, unless it managed to get service for at 
least this much!

Apply at all thresholds 𝜏𝜏 simultaneously to get   
no-regret at all scales  implies negative drift

𝜆𝜆𝑖𝑖
𝜇𝜇𝑗𝑗



Extra Technical Details

• No-regret needs to hold with high-probability 
unlikely bad situations will happen, need to be able to recover

• Pemantle/Rosenthal needs “sufficiently regular” = bounded moments: 
• use model with deferred decisions, study ages instead of sizes: age of 

oldest packet  𝑇𝑇𝑖𝑖𝑡𝑡 in queue 𝑖𝑖

time

𝑋𝑋1 𝑋𝑋2 𝑋𝑋5𝑋𝑋4𝑋𝑋3 𝑋𝑋6 𝑋𝑋7 𝑋𝑋8 𝑋𝑋9

𝑌𝑌1 𝑌𝑌2 𝑌𝑌3

𝑋𝑋𝑗𝑗 ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜆𝜆𝑖𝑖)

𝑌𝑌𝑘𝑘 ~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝜆𝜆𝑖𝑖)



Extra Technical Details (3)

Potential: Φ where Φ = ∑𝜏𝜏Φ𝜏𝜏
with  Φ𝜏𝜏 = # packets aged 𝜏𝜏 or older in the system

With deferred decision:  𝜱𝜱𝝉𝝉 = ∑𝒊𝒊 𝝀𝝀𝒊𝒊(𝑻𝑻𝒊𝒊𝒕𝒕 − 𝝉𝝉)
= expected # of packets age 𝜏𝜏 or older, given oldest in each queue

Contribution of one que to Φ = ∑𝜏𝜏<𝑇𝑇𝑖𝑖𝑡𝑡 𝜆𝜆𝑖𝑖 𝑇𝑇𝑖𝑖
𝑡𝑡 − 𝜏𝜏 ≈ 𝜆𝜆𝑖𝑖(𝑇𝑇𝑖𝑖𝑡𝑡)2/2

Clearing one packets decreases 𝑇𝑇𝑖𝑖𝑡𝑡 by 𝑌𝑌~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝜆𝜆𝑖𝑖), 
expected decrease is 1/𝜆𝜆𝑖𝑖



Selfish Queuing: Price of Anarchy

Theorem 1 [Gaitonde-T ’20]: if queues use no-regret algorithms to select 
servers and for all 𝑘𝑘,

�
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 < 0.5�
𝑖𝑖=1

𝑘𝑘

𝜇𝜇𝑖𝑖

Then queue lengths/ages grow sublinearly, and this bound is tight.

Theorem 2 [Gaitonde-T‘21]: If queues choose servers patiently, and for all 𝑘𝑘

then in every equilibrium, queue lengths/ages grow sublinearly. 0.63 = (𝑒𝑒 − 1)/𝑒𝑒

�
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 < 0.63�
𝑖𝑖=1

𝑘𝑘

𝜇𝜇𝑖𝑖



• Both sending to top 
server gets .5 rate and 
so has no-regret 

• Age/split top server 
equally  linear growth

• Deviating gives regret

• Moving to inferior 
server selfishly helps:

Why? Helps top queue 
clear, indirectly helping 
both queues clear!

𝜇𝜇1 = 1

𝜇𝜇2 = .47

1

1 .9

.1

𝜆𝜆1 = .51

𝜆𝜆2 = .51

No-regret is myopic: Example

But the 0.47 rate causes regret!



No-regret learning (Hannan consistency)

time

No regret: for any fixed action 𝑥𝑥:
∑𝑡𝑡 𝑢𝑢𝑖𝑖 𝑎𝑎𝑡𝑡 ≥ ∑𝑡𝑡 𝑢𝑢𝑖𝑖(𝑥𝑥,𝑎𝑎−𝑖𝑖𝑡𝑡 )

Algorithmic idea for no-regret:  explore-exploit
If outcome also depends on history:

∑𝑡𝑡 𝑢𝑢𝑖𝑖 𝑎𝑎1:𝑡𝑡 ≥ ∑𝑡𝑡 𝑢𝑢𝑖𝑖((𝑎𝑎𝑖𝑖1:𝑡𝑡−1, 𝑥𝑥),𝑎𝑎−𝑖𝑖1:𝑡𝑡) − o(T)
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What’s Going On?

• What we do: evaluate alternate outcome without considering long-term 
effect of the change

�
𝑡𝑡

𝑢𝑢𝑖𝑖 𝑎𝑎1:𝑡𝑡 ≥�
𝑡𝑡

𝑢𝑢𝑖𝑖 𝑎𝑎𝑖𝑖1:𝑡𝑡−1, 𝑥𝑥 , 𝑎𝑎−𝑖𝑖1:𝑡𝑡 − 𝑜𝑜(𝑇𝑇)

Too myopic: not patient enough to see long term benefit of “bad” servers:

• What we may want (?):

�
𝑡𝑡

𝑢𝑢𝑖𝑖 𝑎𝑎1:𝑡𝑡 ≥�
𝑡𝑡

𝑢𝑢𝑖𝑖 𝑥𝑥1:𝑡𝑡 ,𝑎𝑎−𝑖𝑖1:𝑡𝑡 − 𝑜𝑜(𝑇𝑇)

• We study the patient queuing game with stationary strategies



Patient Queuing Game

• Each queue 𝑖𝑖 picks fixed randomization over servers, 𝑝𝑝𝑖𝑖 ∈ Δ𝑚𝑚−1 to be 
played in every round it has a packet

• Induces a Markov chain of queue ages
• Each queue 𝑖𝑖 aims to minimize expected asymptotic aging rate, i.e.

limsup
𝑇𝑇→∞

𝔼𝔼[𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑖𝑖 𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇]
𝑇𝑇

when running Markov chain with randomizations 𝑝𝑝1,…, 𝑝𝑝𝑛𝑛
• [Gaitonde-T‘21]: Nash equilibria of this game



Example of a Nash equilibrium

𝜆𝜆 𝜆𝜆 𝜆𝜆 𝜆𝜆

𝜇𝜇 = 1 𝜇𝜇 = 1 𝜇𝜇 = 1

1
.27 .73 .73 .27 1

All ques clear if 𝜆𝜆 ≤ 3− 2− 3
2

4
≈ .73

2 − 3 ≈ .27



Patient Queuing Game

• Immediate problems:
• What are the asymptotic aging rates?
• Why should there exist an equilibrium? 
• Price of anarchy?



Price of Anarchy

• Worst-case (intuitively): 𝑛𝑛 equal 
queues, 𝑛𝑛 servers with rate 1, 
uniform mixing  worst case 
needs at least 𝑒𝑒

𝑒𝑒−1
slack 

• In general: fastest-aging queue 
cannot benefit from deviation at 
equilibrium, but not clear why

• Queue incentives can come from 
many tight subsets!

1/𝑛𝑛
𝜇𝜇 = 1

𝜇𝜇 = 1

𝜇𝜇 = 1

𝜇𝜇 = 1

𝜆𝜆

𝜆𝜆

𝜆𝜆

𝜆𝜆



Long-Run Limits: One Queue

• Example: one queue, one server (no strategies, no competition)

• Ages by one deterministically
• Clears packet with probability 𝜇𝜇
• Expected decrease in age 1/λ if server succeeds
 Long-run aging rate should be

𝑚𝑚𝑚𝑚𝑚𝑚 0 , 1 −
𝜇𝜇
𝜆𝜆

λ 𝜇𝜇



Long-Run Limits: General Case

• Theorem [Gaitonde-T]: For fixed 𝑝𝑝1,…, 𝑝𝑝𝑛𝑛, queues almost surely 
cluster into groups with same long-run aging rate 

• Fastest aging subset 𝑆𝑆1 given by 

𝑆𝑆1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑆𝑆⊆[𝑛𝑛] 1 −
𝜇𝜇 𝑆𝑆
𝜆𝜆 𝑆𝑆

where 𝜆𝜆 𝑆𝑆 = ∑𝑖𝑖∈𝑆𝑆 𝜆𝜆𝑖𝑖 = combined arrival rate of subset 𝑆𝑆, 
𝜇𝜇 𝑆𝑆 = expected # packets cleared by S when having priority 

• Recurse on rest of queues by discounting servers by probability any 
queue in 𝑆𝑆1 sends to server



𝜆𝜆 𝜆𝜆 𝜆𝜆 𝜆𝜆

𝜇𝜇 = 1 𝜇𝜇 = 1 𝜇𝜇 = 1

1
.27 .73 .73 .27

All subsets containing middle two have maximum rate in algorithm!

1



Structural Properties: 

• set of subsets with maximum rate at each step is closed under union 
and intersection

• Aging rates continuous in 𝑝𝑝1,…, 𝑝𝑝𝑛𝑛
• With these costs, ∃ Nash equilibria (Kakutani’s theorem)
• Proof long-run rates as given relies heavily on concentration and 

careful accounting of priorities



Price of Anarchy: Proof Sketch

• Idea: continuously deform a Nash profile to one with 
“proportional” loads on each server

• Given total load on each server, worst case is 
symmetrized profile

• Want to show deformation process only increases aging 
rate via Nash property 

• Key idea: use structural properties (closure under unions 
and intersection) of tight subsets

𝜇𝜇 = 1

𝜇𝜇 = 1

𝜇𝜇 = 1

𝜇𝜇 = 1

𝜆𝜆

𝜆𝜆

𝜆𝜆

𝜆𝜆



Price of Anarchy: Proof Sketch

• Tight subsets inside 𝑆𝑆1 (fastest-aging group) form levels
• Queue incentives essentially determined by level



𝜆𝜆 𝜆𝜆 𝜆𝜆 𝜆𝜆

𝜇𝜇 = 1 𝜇𝜇 = 1 𝜇𝜇 = 1

1
.27 .73 .73 .27

All subsets containing middle two have maximum rate in algorithm!

1

Level 1Level 2 Level 2



Price of Anarchy: Proof Sketch

• Tight subsets inside 𝑆𝑆1 (fastest-aging group) form levels
• Queue incentives essentially determined by level
• Shift all highest-level queues first towards symmetrized profile
 Succeeds directly from Nash definition
• Inductively proceed to next level
 Can show this schedule preserves relevant incentives from Nash
• Bound aging rate at final symmetrized profile



Conclusions
Learning players achieve high social welfare many games (even some 
with carryover effect), 
• but no-regret learning can be too simplistic: can one obtain better 

bounds using better learning algorithms?

What may be a good learning method for the players?

My first guess: learning with low policy regret
Sentenac, Boursier, Perchet, NeurIPS’21: not true
• Offers cooperative solution

Maybe more natural learning processes do better (even just no-regret)?
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