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Counting points

1. Two lines in a plane meet in one point.

2. Bezout’s theorem: a curve of degree d and a curve of degree
e meet in de points.



Bezout’s theorem

Given two plane curves C1 of degree d1 and C2 of degree d2, they
have exactly d1d2 points in common.



Well, ”exactly”...

▶ If the two curves are tangent at the intersection point, we
need to use multiplicities.

▶ Points can ”escape” at infinity. We use projective geometry.

▶ Some points only exist if one allows complex coordinates. We
fix an algebraically closed base field (C in this talk).

And ”of course” we have to exclude the case where there is a
common subcurve (this will come back!)



Counting lines

▶ There is one line through two given points.

▶ Given four lines in space, there are two lines intersecting all of
them.

▶ Given a degree 3 polynomial f (x , y , z) (cubic surfaces), there
are 27 lines contained in the surface f = 0.
In each case we assume the input data to be ”generic”
(outside a set of measure/probability zero). In general, we
count curves, or anything else, only if the ”expected
dimension” is zero.



Calculate like an algebraic geometer!

Consider the curve C of equation {y + x3 = 0} in the plane
{z = 1}, and let X be the cone over C with vertex in the origin.

The equation of X is f (x , y , x) := yz2 + x3 = 0.

What is the space of lines contained in X? Let’s work near the line
(0, 0, t).



We can parametrize the line as (a+ tu, b + tv , t) where (a, b, u, v)
are parameters determining the line, and t is a coordinate on the
line. We impose the condition f (a+ tu, b + tv , t) = 0 as
polynomial of degree 3 in t; we get four equations.

▶ v + u3 = 0;

▶ b + 3au2 = 0;

▶ 3a2u = 0;

▶ a3 = 0.

We can solve in v and b and get two free parameters a, u with
conditions 3a2u = a3 = 0. This does NOT mean a = 0!



Counting curves of given degree d and genus g

Some more classical results in enumerative geometry of the plane:

1. There is one degree two, genus zero through 5 given points;

2. There is one degree three, genus one curve through 9 given
points;

3. There are twelve degree three, genus zero curves through 8
given points.

Open question (before string theory): How many plane curves
of degree d and genus g are there through N(d , g) points? There
is an explicit formula for N(d , g), which is chosen so that the
expected dimension is zero. NB Here the genus is the geometric
genus, ie the genus of the normalization.



Gromov’s compactness theorem

Just as in the counting point case, the first step is to compactify
the space of curves.
In 1985, M. Gromov constructed a compact moduli space for
maps from complex curves to symplectic manifolds (in particular
all smooth complex projective varieties/projective manifolds).
Gromov’s construction got a counterpart in algebraic geometry due
to Kontsevich and Manin.

(a) Mikhail Gromov (b) Maxim Kontsevich (c) Yuri Manin



Unfortunately the moduli space so constructed isn’t a manifold.
It doesn’t have local coordinates, nor a dimension.

All it has is an ”expected dimension” D: ie, locally it can be
naturally described by N equations in N + D variables. However
different points will in general have different N (and in algebraic
geometry, local means étale not Zariski local). The actual
dimension may vary.

(Whispering: technically, it isn’t even a space but a Deligne
Mumford stack).



Example: two equations in three variables give expected dimension
1, but xy = xz = 0 is the union of a line and a plane.



First interaction

In 1991, physicists Philip Candelas, Xenia De La Ossa, Paul Green,
and Linda Parkes derived a power series formula for all numbers of
rational curves on a quintic threefold.
This agreed with the known cases d = 1, 2.

Soon after, mathematicians Geir Ellingsrud and Stein Arild
Strømme calculated rigorously the case d = 3... and got a different
number!

The mathematicians had made a programming mistake, and when
it was fixed, their number agreed with the physicists’ prediction.



Witten: applying physics to maths

Based on string theory ideas,
Edward Witten asked himself in
1991: what if we pretend the
Gromov moduli space is a
manifold of the expected
dimension?

He then showed that, if this were the case, a lot of counting curves
problems could in principle be solved: the solutions have been
called Gromov-Witten invariants.

He combined the invariants in a partition function Z , and he and
other physicist ”derived” that Z must satisfy a series of partial
differential equations, PDEs. In some cases such PDEs are enough
to compute the invariants.



Interesting, promising results... based on an assumption that was
known to be wrong.
Kontsevich and Manin produced an axiomatization of Witten’s
argument. That is, they made explicit the numerical assumptions
he had used, and posed the problem of how to define
Gromov-Witten invariants in general so that they would do what
Witten had proposed they should do.
Kontsevich then showed that, if KM axioms could be made
rigorous, the problem of counting plane curves of genus zero and
any degree could be solved recursively.
Goal for mathematicians: replace ”derivation” by PROOF. The
hunt begins!



Algebraic vs. symplectic geometry

There were two overlapping communities trying to solve the
problem.
Symplectic geometry is a variation of differential geometry. It is
strongly related to mathematical physics, as the easiest example of
symplectic manifold is the phase space of a system of particles,
recording for each of them position and speed. Its methods are
analytic, extension of calculus in several variables.
Algebraic geometry is the study of shapes that can be described
not by arbitrary equations, but by polynomials. It is narrower in
scope than symplectic geometry, and technically more demanding.
It does, however, have a much easier grasp of so-called
singularities.
So... who won the race?



Symplectic geometry approach

Symplectic geometry led the race for a long time. Invariants with
the desired properties were defined, first in special cases, then in
big generality, then in increased generality. But the full
generalization didn’t come.

In the meantime, algebraic geometers were making slow progress.
Spoiler



Algebraic geometry approach

Kai Behrend and Yuri Manin recast the Kontsevich Manin axioms
not in terms of numbers, but of a virtual class, a homology class
on the moduli space of the expected dimension, over which to
make integrals.

This wasn’t a new idea in algebraic geometry, and in fact a very
general formulation had been produced by Fulton and
MacPherson; however such class existed only if there was a global
presentation, not only a local one.



Race completed!
In 1996, Jun Li and Gang Tian gave a construction of the virtual
class, in full generality. This required producing a global object
over the moduli space (technically, a pure dimensional cone),
embed it into a vector bundle, and then apply the
Fulton-MacPherson method.

The key input is a so called tangent-obstruction complex, and the
technique involves local choices, gluing, and showing that the
result doesn’t depend on the choices.

(a) Jun Li (b) Gang Tian



Why am I telling you this?
In 1997, inspired by Li and Tian’s work, Behrend and I were able
to construct a virtual class under very general assumptions. In
particular, we showed that Li and Tian’s cone, which they
constructed by patching together local charts, was in fact induced
by a canonical object, the intrinsic normal cone (which in turn
could be ”found” already in Fulton and MacPherson’s
construction).



Ingredients in our recipe

Our construction follows closely the method of Fulton
MacPherson’s intersection theory. However, we replace cones and
vector bundles by their stack counterparts; we also use the ideas in
Deligne’s work on Picard stacks to relate vector bundle stacks on
X to the derived category of X .

In analogy with Li and Tian, the input is a complex in the derived
category with a map to the cotangent complex. The necessary
condition, namely that we get a closed embedding from the normal
cone into an ambient bundle, can be recast into infinitesimal
deformation theory, for which there are ample references.



Gromov Witten invariants: computational techniques

Tom Graber and Rahul Pandharipande used our construction to
prove a virtual version of the classical localization formula in
intersection theory, which became one of the key computational
methods in the field.

The construction led naturally to proving relationships between
enumerative invariants, without actually computing them. For
instance, Kontsevich’s original formula counts recursively the
number Nd of curves of genus zero and degree d through 3d − 1
generic points in the plane, using as seed just the number N1.

Gromov Witten invariants are related to Frobenius manifolds,
which brought fruitful interactions with the research in integrable
systems.



Donaldson invariants

The original motivation for Li and Tian had been not just to give a
definition of Gromov Witten invariants, but also to redefine
Donaldson invariants, heavily based on analysis methods, in a
purely algebraic geometry set-up.
This became indeed possible, but not in full generality because of a
technical issue with strictly semistable sheaves. (This has since
been fixed but adapting to algebraic geometry a recent technique
by Frances Kirwan in GIT theory).
So, in this case the analytical methods were better? Well...



Donaldson-Thomas invariants
In 1998, Simon Donaldson proposed to his PhD student Richard
Thomas to construct analogues of Donaldson invariants for
6-dimensional symplectic manifolds.
After trying analytic/symplectic methods, Thomas finally gave a
construction using the algebraic virtual class (on a 3-dimensional
complex projective manifold Y ), under the assumption that KY is
trivial or −KY effective.
In particular, the case where KY = 0, so called Calabi Yau
threefolds, was interesting for both geometers and physicists.

(a) Simon Donaldson (b) Richard Thomas



What next? Outside algebraic geometry

▶ Theoretical physics

▶ Integrable systems

▶ Symplectic geometry

▶ PDEs on formal power series

▶ Index of Fredholm operators among Banach orbibundles



What next? Gromov Witten

▶ Relative GW invariants, degeneration formulas

▶ GW for orbifolds

▶ open GW invariants

▶ GW invariants in characteristic p

▶ Other invariants (non-contracting maps, quasimaps...)



What next? Sheaf counting

▶ Invariants in CY threefolds, including noncompact ones

▶ Wall crossing methods

▶ Invariants for Quot schemes

▶ Degeneration formulas

▶ Behrend function



Theoretical advances, mild

▶ Virtual pushforward and pullback

▶ Virtual structure sheaf

▶ Symmetric obstruction theories

▶ Use of master spaces

▶ Virtual Grothendieck Riemann Roch



Infinity category advances

▶ Quasismooth derived schemes

▶ Shifted symplectic structures

▶ Categorification of Behrend function

▶ Trimester at IHP 2023!



Thank you!
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