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Non linear PDE’s are ubiquitous in Mathematics and Physics.
Some of the most famous examples come from Hydrodynamics:
such as the Korteweg de Vries, Non Linear Schrödinger, Camassa
Holm etc.

(NLS) − iut + uxx + |u|2u = 0 ,

(KdV) ht − hxxx + hhx = 0 ,

(CH) ht − hxxt − 4hx + hhxxx + 3hhx − 2hxhxx = 0

all these equations model one dimensional waves.. of course
physical models are in dim. three , but one looks for plane waves!
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The NLS appears naturally as a ”modulation equation”

which means you look for a wave profile

h(x , t) = Re(u(εx , ε2t)e i(x+t)) + corrections

where (for example)

(NLS) − iuτ + uyy + |u|2u = 0 ,
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One might be interested also in modeling waves in higher
dimensional domains (∆ is the Laplacian){

− i∂tu +∆u = |u|2pu,
u = u(t, x) , x ∈ D

(NLS)

I could be more refined and work on a Riemanian manifold .
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I shall mostly concentrate on the NLS model on very simple
compact domains where I expect to see persistent wave
phenomena.
Consider an initial value problem

The Cauchy problem:{
− i∂tu + uxx = |u|2u,
u(0, x) = u0(x) , x ∈ [0, 2π]

(NLS)

where u0(x) is a sufficiently smooth periodic function.

what can I say about the solution?
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(KdV) ht − hxxx + hhx = 0 ,

(CH) ht − hxxt − 4hx + hhxxx + 3hhx − 2hxhxx = 0

(NLS) − iuτ + uyy + |u|2u = 0 ,

actually all the 1D equations above are completely integrable so I
could ”explicitly determine” the solution!
However significant results should be Robust:
i.e. hold also if I make a small perturbation or if I slightly change
the initial datum
Remember that these PDEs are just approximate models!
Over very short time scales I can ignore perturbations
but I am interested in long time behavior!
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This is a well known framework for finite dimensional Hamiltonian
systems,
where you have an integrable model (you know everything about
the solutions)
and you study the dynamics of small perturbations of this system.
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Let us Forget the integrability and start by looking for small
solutions so that (at least for finite times) we can treat the
non-linearity as a perturbation

(KdV) ht − hxxx + hhx + h.o.t = 0 ,

(CH) ht − hxxt − 4hx + hhxxx + 3hhx − 2hxhxx + h.o.t = 0

(NLS) − iuτ + uyy + |u|2u + h.o.t = 0 ,

if I rescale h⇝ εh, this just amounts to adding an ε in front of the
non-linear term
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Let us Forget the integrability and start by looking for small
solutions so that (at least for finite times) we can treat the
non-linearity as a perturbation

(KdV) ht − hxxx + ε(hhx + h.o.t) = 0 ,

(CH) ht − hxxt − 4hx + ε(hhxxx + 3hhx − 2hxhxx + h.o.t) = 0

(NLS) − iuτ + uyy + ε2(|u|2u + h.o.t) = 0 ,

if I rescale h⇝ εh, this just amounts to adding an ε in front of the
non-linear term
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Natural questions

If I start with a small initial wave profile (in some function space)

Is there a ”typical behavior” of solutions?

If so, which is it and for how long does it persist?
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Natural questions

In all the examples I made I know all solutions of the linear PDE.
Questions:

For which time scales do the all solutions of the nonlinear
equation stay close to corresponding solutions of the linear
one? (a trivial estimate is T ≪ 1/ε)

Are there nonlinear solutions which stay close to linear ones
for all times?

What new phenomena appear due to the presence of the
non-linearity?

Remember that the answers should depend strongly on the
boundary conditions.
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NonLinearSchrödinger on tori

I will concentrate on NLS equations on T and T2 = R2 \ 2πZ2{
− i∂tu +∆u = |u|2u,
u = u(t, x) , x ∈ T2

(NLS)

because here I have an interesting dynamics and a very natural
occurrence of recursive waves in a relatively simple model.
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In this framework

The Cauchy problem:{
− i∂tu +∆u = |u|2u,
u(0, x) = u0(x) x ∈ T2

(NLS)

where u0(x) is a sufficiently smooth function.

This problem is globally well posed for u0 small.
If you start with a smooth initial datum the solutions stays smooth
at all times.

The NLS does not model wave-breaking

The 2D NLS is not integrable
we cannot expect to be able to solve explicitly...and solutions
should depend strongly on initial data.

look for small solutions
just rescale u → (ε)1/2u
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Linear theory

First we study the solutions at ε = 0{
−i∂tu +∆u = 0,

u(0, x) = u0(x) , x ∈ T2

It is useful to describe the solution in the Fourier modes:

u(0, x) =
∑
k∈Z2

uk(0)e
ik·x =⇒ u(t, x) =

∑
k∈Z2

uk(0)e
ik·x+i|k|2t
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Linear theory: −i∂tu +∆u = 0

each Fourier mode oscillates independently with frequency
λk = |k |2.

u̇k(t) = i|k|2uk , =⇒ uk(t) = uk(0)e
i|k|2t

ALL solutions of the linear Schrödinger equation are PERIODIC of
period 2π
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Possible interesting phoenomena

At ε = 0, we have an infinite chain of independent springs

to simplify ...think of 1d

When ε > 0... they have a weak interaction!



Introduction stable special Dyn.syst. disegni lit. stability lit. KAM results almost thanks

Possible interesting phoenomena

At ε = 0, we have an infinite chain of independent springs If we
give energy to a finite number...

When ε > 0... they have a weak interaction!
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Possible interesting phoenomena

Actually the model

is a
strong simplification nearest neighbor interaction! In the NLS

u̇k = i|k |2uk + ε
∑

k1+k2−k3=k

uk1uk2 ūk3 .

all points forming a parallelogram k1 + k2 − k3 − k = 0 have an
interaction!
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The stability question.

A very reasonable question is to study the time evolution of the
Sobolev norms

|u|2s :=
∑
k∈Z2

|uk(t)|2(1 + |k |2s)

If |u(t = 0)|s < ∞ then |u(t)|s < ∞... can I control the time
evolution of |u(t)|s?
The smallness in Sobolev norm means |ûk | ∼ |k |−s as k → ∞

so the bigger is s the more is u localized on the low modes.
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The stability question.

{
− iut +∆u = |u|2u,
u(0, x) = u0(x) x ∈ T2

(NLS)

Assume that u0(x) is small in some appropriate Sobolev norm, I
want to know for how long the solution u(x , t) is small in the same
Sobolev norm.

Stability:

If |u0(x)|s ≤ δ , u(x , t) exists and satisfies |u(·, x)|s ≤ 2δ

for all |t| < T (s, δ).

the main point is to get a good lower bound on T (s, δ).
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The stability question.

It is useful to describe the solution in the Fourier modes:

u(t, x) =
∑
k∈Z2

uk(t)e
ik·x

if we ignore the nonlinearity then |uk(t)|2 is constant in time.
If the Sobolev norm grows then we are transferring energy from
low modes to high modes
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Possible interesting phoenomena: special solutions

I can also look for particular global solutions

1. Recurrent behavior

2. Energy transfer
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Possible interesting phoenomena: special solutions

I can also look for particular global solutions

1. Recurrent behavior

Start from an initial datum which is essentially localized on a finite
number of Fourier modes...
the solution stays essentially localized on the same modes at all

times.

2. Energy transfer
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Possible interesting phoenomena: special solutions

I can also look for particular global solutions

1. Recurrent behavior

2. Energy transfer

Start from an initial datum which is essentially localized on a finite
number of Fourier modes...
the Fourier support of the solution spreads to higher modes.
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Dynamical systems in ∞ dimension.

we consider a PDE on a compact manifold as a non-linear
dynamical system:

u̇ = F (u) , u ∈ V

where

V is a vector space (in our case a scale of Hilbert spaces)

F is a non-linear functional from V in itself.
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PDE examples.

All the PDEs in my examples “fit this setting”, for example

−i∂tu +∆u = |u|2u, , x ∈ Tn

recalling

V ≡ ∪p∈RHp := {u(x) =
∑
j∈Zn

uje
ij ·x ,

∑
j

⟨j⟩2p|uj |2 < ∞}

(⟨j⟩ := max(1, |j |))
we get

u̇j = i|j |2uj + i
∑

j1−j2+j3=j

uj1 ūj2uj3

If we consider ut − uxxt − ux + uxxx + uuxxx + 3uux − 2uxuxx = 0
we get

u̇j = iλjuj + Pj , λj ∈ R
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Dynamical systems in ∞ dimension.

I shall study my system close to an elliptic fixed point that is

u̇ = F (u) = Lu + P(u)

where L is a (typically unbounded) linear operator with

pure point purely immaginary spectrum

while P is a non-linear term (which has a zero of degree at least
two at u = 0).
Thus one can reduce to a system of the form

u̇j = iλjuj + Pj(u) , u = {uj}j∈I

where λj ∈ R. This is a chain of harmonic oscillators coupled by a
non-linearity.

7.50
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Linear theory

If take u small, P(u) is ”perturbative” w.r.t. the linear terms...

u̇j = iλjuj + Pj(u)

The unperturbed system is a chain of uncoupled harmonic
oscillators with frequencies λj .

u̇j = iλjuj ⇒ uj(t) = e iλj tuj(0)

So the linear solutions are a linear superposition of oscillating
motions
If the λj are all rationally dependent (say all integers)
then the solution is periodic in time.
Otherwise if the frequencies are rationally independent it is called
a quasi-periodic motion.
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Quasi-periodic solutions and invariant tori

Recalling that each uj(t) ∈ C spans a circle
All the solutions are dense on invariant tori with dimension
depending on the support of the solution

S := {j ∈ Zn : uj(0) ̸= 0}

and on whether the λi are rationally independent.

u(t, x) =
∑
j

uj(0)e
iλj t+ij ·x =

∑
j∈S

√
ξje

iλj t+ij ·x

which solutions of the linear system survive the onset of the
non-linearity?
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finite dim. u̇j = iλjuj + Pj

In finite-dimensional nearly integrable Hamiltonian systems,
Under some non-degeneracy assumptions (on λ or on P)

Exponential stability: the actions |uj |2 are approx. constant
for exponentially long times

Typical recurrent behavior: the majority of small initial data
give rise to quasi-periodic solutions. with diophantine
frequency

The KAM theorems predict persistence of most but not all
quasi–periodic orbits. In the complementary set to the
quasi–periodic orbits one may see chaotic behavior .
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Summarizing: In finite dimension for most λ,P
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Summarizing: In finite dimension for most λ,P

One can also find lower dimensional tori
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The appearance of Cantor sets

The KAM theorems predict persistence of most but not all
quasi–periodic orbits, parametrized by Cantor sets, at the
same time one has the existence of infinitely many orbits, near
each quasi–periodic orbit, which present cahotic behaviour.

The complications arise from small divisors and resonances so
that the success of the algorithm depends on suitable non
degeneracy conditions which must be treated by a mixture of
combinatorial and analytic methods.
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What happens in infinite dimension?
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Stability for PDEs

There is a vast literature on stability of elliptic fixed points!

Stability:

If |u0(x)|s ≤ δ , u(x , t) exists and satisfies |u(·, x)|s ≤ 2δ

for all |t| < T (s, δ).

Stability: Bourgain, Bambusi, Delort, Faou,Grebert, Szeftel,
Yuan-Zhang, Cong-Mi-Wang, many more ....
The main point is to remember that the stability times depend
very strongly on the choice of the function space!
Also in PDEs with derivatives in the nonlinearity also the question
of local well posedness is delicate!
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Some results for instability

To see instability results we need to consider NLS on T2!

Breakthrough results by
Colliander-Keel-Staffilani-Takaoka-Tao 2010: growth (of a
finite but arbitrarily large factor) of Sobolev norms for the
two-dimensional cubic NLS

Kaloshin-Guardia 2013: growth of Sobolev norms for the
cubic NLS with control on the time.

Haus-P for the quintic NLS and Haus-Guardia-P

Related work : Giuliani-Guardia-Pasquali-Pau
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Typical solutions in ∞-Dim?

In the finite dimensional setting quasi-periodic solutions are
”typical”

In ∞-dim the scene is so far rather obscure:
in an integrable PDE, almost-periodic solutions are typical
and lie on maximal infinite dimensional invariant tori.
what is their fate after perturbation? Is it still true that the
majority of initial data produces perpetually stable solutions?

There is a wide literature for existence of quasi-periodic
solutions mostly for semilinear PDEs
such solutions are NOT typical and correspond to lower
dimensional tori

there are very few results on infinite dimensional tori mostly
for not very natural models.

There are examples of PDEs which exhibit diffusive orbits.

18
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Summarizing: In infinite dimension

Many results on stability,
partial results on instability
No information on typical solutions. Most results on elliptic tori
(KAM for PDEs)
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KAM for PDEs

The first results were on model Hamiltonian PDEs such as the
semilinear NLS with Dirichlet boundary conditions

−iut + uxx + |u|2u + g(x , u) = 0, u(t, 0) = u(t, π) = 0

(Semilinear PDEs with Dirichlet b.c. : Kuksin, Wayne,
Pöschel, Kuksin-Pöschel, Periodic b.c. Chierchia-You ,
Craig-Wayne ’93 (periodic solutions), Bourgain ’94 (quasi
periodic solutions),.

Higher dimensional manifolds:
Tori: Bourgain ’98,’05, Wang ’10-’15, Berti-Bolle ’10- ’15,
Geng-You, Eliasson-Kuksin ’10, Geng-You-Xu ’10, Procesi-P.
’11-’15,
Compact Lie groups Berti-Corsi-P., Grébert-Paturel ’16
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Some more literature: unbounded non linearities

semi-linear Pde’s
Kuksin ‘98, Kappeler-Pöeschel ‘03 KdV, Liu-Yuan ‘10,
Zhang-Gao-Yuan ‘11 Hamiltonian and Reversible DNLS Berti,
Biasco, P. , Hamiltonian and Reversible DNLW

Quasi-linear or fully non-linear Pde’s
periodic solutions: Ioss-Plotnikov-Toland ’01- ’10,
Alazard,Baldi capillary water waves
quasi-periodic solutions: Baldi, Berti, Montalto ’11 Airy,Baldi,
Berti, Haus, Montalto, Feola-Giuliani Berti-Kappeler-Montalto
Higher Dimension: Corsi-Montalto, Baldi-Montalto,
Feola-Grebert

22
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iut −∆u + |u|2pu = 0 with x ∈ T2

quasi periodic solutions

Theorem (Procesi-M.P. 15)

For any d ≥ 1. For most choices of Fourier modes
S = {j1, . . . , jd} ⊂ Z2, one has that for many ξ = ξ1, . . . , ξd ,
there exists a quasi-periodic solution of NLS of the form

u(ξ, x , t) =
√
ε(

d∑
i=1

√
ξie

it(|ji |2+ωi (ξ))e iji ·x + O(ε))
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For many choices of ξ1, . . . , ξ4
there is a true solution close to the linear solution

√
ε(

4∑
i=1

√
ξie

it(|ji |2)e iji ·x

the true solution looks like

u(ξ, x , t) =
√
ε(

4∑
i=1

√
ξie

it(|ji |2+ωi (ξ))e iji ·x + O(ε))
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In our picture with springs

(blue dots are at rest)
give energy to modes in S .
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In our picture with springs (blue dots are at rest)
give energy to modes in S .

Linear solution
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In our picture with springs (blue dots are at rest)
give energy to modes in S .

Linear solution

True solution



Introduction stable special Dyn.syst. disegni lit. stability lit. KAM results almost thanks

NB. near to these solutions we expect INSTABILITY!
If we take special values of the actions of the springs in S and give
a little energy to the springs in S2 (in green) Time zero

time T ≫ 1
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Summarizing

Some comments:

Quasi-periodic solutions are very special, but their persistence
is quite general (a similar approach can be used for other
PDEs or for the NLS on other compact domains)

The result for the instability is very model depending. Already
passing from the cubic NLS to the quintic requires some very
new strategies.
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Drawbacks

Quasi-periodic solutions are NOT typical even for integrable
equations.

The quasi-periodic solutions described are all at least C∞

(both in time and space)

In order to find finite regularity solutions one needs a
non-linearity with finite regularity, and even in this case the
regularity is very high.

To overcome these difficulties it is natural to look at
almost-periodic solutions.
Very few results, most on 1d NLS or NLW with external
parameters.

iut − uxx + V ⋆ u + |u|4u = 0 , V ⋆ u =
∑
j∈Z

Vjuje
ijx
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iut − uxx + V ⋆ u + |u|4u = 0

Even in this special setting one is only able to construct few
almost-periodic solutions.
few ⇝ special and/or very high regularity!
Authors Decay of |uj | Regularity of V

[Bo’96] at least superexponential analytic

[Pö’02] at least superexponential ℓ2
[Geng-Xu’12–’16] exponential ℓ2
[Bo’04 + below∗] subexponential ℓ∞
[BMP’22] polynomial ℓ∞
[CGP’23] subexponential hp

below∗ = Cong-Liu-Shi-Yuan, Biasco-Massetti-P.,
Cong-Mi-Shi-Wu, Cong-Yuan (NLW),Cong, Cong-Wu high
dimension



Introduction stable special Dyn.syst. disegni lit. stability lit. KAM results almost thanks

Finite regularity solutions for NLS

iut + uxx − V ∗ u + F (|u|2)u = 0 (1)

Theorem (Biasco-Massetti-P. 22)

For any p > 1 and for most choices of V ∈ ℓ∞ there exist infinitely
many (both weak and classical) almost periodic solutions

u(t, x) =
∑
j

ûj(t)e
ijx , ωj ∼ j2 , sup

j
|ûj ||j |p ≪ 1 .

Such solutions are approximately supported on sparse subsets of Z.
For example Set S := {j ∈ Z : j = 2h , h ∈ N}

we have a solution with |ûj | ∼ |j |−p for all j ∈ S
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Open problems

Find Maximal tori (no conditions on S) of finite regularity.

NLS with multiplicative potential

iut − uxx + V (x)u + |u|4u = 0

Degenerate KAM theory

utt + uxxxx +mu + u3 = 0

Fix some (possibly very strong) regularity class, and prove
that for most potentials V ∈ ℓ∞ typical solutions in that class
are almost-periodic.
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Thanks!
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