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1 Introduction: Tensors

1.1 Where do large-scale tensors appear?

The tensor space V =1V; ® V> ® ... ® Vz with vector spaces V; (1 < j < d)
is defined as (closure of)

span{v(l) v @... @vl® .yl ¢ Vit
Finite dimensional case:

V; = R"% = RY with I; = {1,...,n;}.
SetI:=11 x I x...x I, then V ~ RL e v= (Vi)ieI.

Tensor product: v = 1D @0 ... @vd cRl with vU) € Rl defined as
(1)
1

d:V[ila"'aid]:vi U(z)’(}z(j) fori:(il,...,id)EI.

Vi — Vil,...,i 1



1.1.1 Functions

Multivariate functions f defined on a Cartesian product

Q=CQ1 xQ x... xSy

are tensors.

For instance,

L?(Q) = L?(91) @ L?() @ ... @ L*(Qy).

Tensor product of univariate functions:

d d
(® f]) (33]_,332,. . 7$d) = H f](xj)
j=1 =1

The multivariate function may be the solution of a partial differential equation.

The numerical treatment replaces functions by finite-dimensional analogues
(— grid functions, finite-element functions).



1.1.2 Grid Functions

Discretisation in product grids w = w1 X wy X ... X wy,
e.g., w; regular grid with n; grid points.

d
j:

RN~A~RUM R ... @ R,

Total number of grid points N = [[7_; n;, e.g., n?. Tensor space:

Small discretisation errors require large dimensions 7.

Challenge: Huge dimensions like in ...
1) n=1000000 and d =3

2) n = 1000 and d = 1000 =-

N — 10001000 — 103000.



1.1.3 Matrices or Operators

Let V=V W®...0V;, W=W1Wo®...0 W,; be tensor spaces,

A Vi — W, linear mappings (1 < j < d).

The tensor product (Kronecker product)

A=A10A4®..A;: V- W

is the mapping

A fv(l) R v(2) R...RQ v(d) — Alv(l) 0% sz(z) R... R0 Adv(d).

If A; € RP*™ then A € R 1,



Example: Poisson problem —Au = f in [0,1]¢, w =0 on T.

The differential operator has the form
0° 0?
L = 2®I® ®I—|—...—|—I®...®I®—2.
Oxg oxs
Discretise by difference scheme with n grid points per direction.

The system matrix is

A=T®IQ..QI+..+1®... 1Ty

Challenge: Approximate the inverse of A € RVXN,

where n = d = 1000, so that

N = n® = 1000199 = 1039,

Later result: required storage: O(dn log? %)



1.2 Tensor Operations

addition: v +w,

scalar product: (v, w)
d : d : d : :
matrix-vector multiplication: <® A(9)> ((X) fv(])> = & A(J)U(J),
j=1 j=1 j=1
Hadamard product: (v ® w) [i] = v][i]w][i], pointwise product of functions

d d d
(@ ,U(j)) o (@ w(j)) =R o) @ i),
j=1 j=1 j=1

convolution: v,w € &j_1 R"™:u=vxw with u;y = > g<k<i Vi_kWk

d d d
(@ ,U(j)) * (@ w(j)) = Q) vV 5w,
j=1 j=1 j=1



1.3 High-Dimensional Problems in Practice

1) boundary value problems Lu = f in cubes or R3 = d =3, n; large
2) Hartree-Fock equations (as 1))

3) Schrodinger equation (d = 3 number of electrons + antisymmetry)
4) bvp L(p)u = f with parameters p = (p1,...,pm) =>d=m+1

5) bvp with stochastic coefficients = as 4) with m = oo

6) coding of a d-variate function in Cartesian product = d = d

7) ...

8) Lyapunov equation (A® I +1® A)x=Db



2 Tensor Representations

How to represent tensors with n? entries by few data?

Classical formats:

e r-Term Format (Canonical Format)

e Tensor Subspace Format (Tucker Format)
More recent:

e Hierarchical Tensor Format



2.1 r-Term Format (Canonical Format)

By definition, any algebraic tensor ve V=V ® Vo ® ... ® V; has a
representation

T .
V:Zv,gl)(@vgz)@...@v,gd) with v,(OJ)EVj
p=1
and suitable r. Set

Ry i= {Zv,ﬁl)®v£2)®---®v§d):vﬁj)evj}
p=1

Storage: rdn (for n = maxdim V}).
If  is of moderate size, this format is advantageous.
Often, a tensor v is replaced by an approximation ve € Ry with r = r(e).

rank(v) ;= min{r : v € R;}, Ry :={v e V:rank(v) <r}.



Recall the matrix A discretising the Laplace equation:

A=TRIR..T+.. +1Q...0 1 ®1Ty.

REMARK: A € R, and rank(A) = d (tensor rank, not matrix rank).
T: tridiagonal matrices of size n X n.

Size of A: N x N with N = n?.
Eg,n=d=1000 = N =n= 10001000 — 103000

We aim at the inverse of A € RVX{V,



Solution: A~1 ~ B, with B, of the form
r d
B, =) a; ) exp(—b;T}),
i=1  j=1

where a;,b; > 0 are explicitly known.

Proof. Approximate 1/x in [1, co) by exponential sums Eyr(x) = >_F_; a; exp(—b;x).
The best approximation satisfies

% _ Er()H < O(exp(—crl/z)).

0o,[1,00)

For a positive definite matrix with ¢(A) C [1,00), Er(A) approximates A1
with

|Er(A) = A7Y], < O(exp(—cr/?)).
Inthecase of A=T1QRIR...01+...+1®...% 1T, one obtains

r d
=1 j=1



Representation versus Decomposition
P = (x?zl‘/:j)r parameter set.

Representation of a tensor:

p: P— Ry CV.

Injectivity of ¢ not required, rank(p(p)) < 7.

Let rank(v) = 7. Under certain conditions the representation of v = ¢(p) is
essentially unique. This allows the decomposition

go_l:Rr — P.



Operations with Tensors and Truncations

r d S d

A:Z(X)A(Vj)ERT, V:Z®v£j)€723

v=1j=1 v=1j=1
r s d

wi=Av=Y Y ® AP € R,

v=1pu=1y=1

Because of the increased representation rank rs, one must apply a truncation

w— w € ‘R, with r < rs.

Unfortunately, truncation to lower rank is not straightforward in the r-term

format.

There are also other disadvantages of the r-term format ....



Numerical Difficulties because of Non-Closedness

In general, R is not closed. Example: a, b linearly independent and

V = a®a®b+aR@b®a+b@a®a € R3\Ro
vV = (b+na)®(a+%b)®a—|—a®a®(b—na)—%b®b®a.

Here, the terms of vy, grow like O(n), while the result is of size O(1).
This implies numerical cancellation: log, n binary digits of v;, are lost.
We say that the sequence {v,} is unstable.

Proposition: Suppose dim(V;) <occand ve 'V = ®§-l:1 V.
A stable sequence vy, € R, with limv,, = v exists if and only if v € R,.

Conclusion: If v =limvy ¢ R, the sequence v, € R, is unstable.

Best approximation problem: Let v* € V. Try to find v € R, with
|v* —v|| = inf{|[v* —w| : w € R}

This optimisation problem need not be solvable.

De Silva—Lim (2008): Tensors without a best approximation have a positive
measure (K = R).



2.2 Tensor Subspace Format (Tucker Format)

2.2.1 Definition of 7;

Implementational description: 7, with r = (71,...,r;) contains all tensors of

the form

vV = Z Z a[zl,.. Zd] ®b(‘7)

11=1 14

with some vectors {b(j) 1 < i4; < rj} C V; possibly with r; < n; and
L

ali1,...,1q] € R.

The core tensor a has H;izl r; entries.

Algebraic description:

Tensor space V=V; ® Vo ® ... ® V. Choose subspaces U; C V) and consider

d
the tensor subspace U = @ U;. Then
=1



Short Notation

! Td

d :
v=Y Y afiy,.... i Qb7
j=1

i
=1  i—1 ’

Define matrices BU) := [bgj) xE bg)] and B := ®?:1 BU).

Then

v = Ba



2.2.2 Matricisation and Tucker Ranks

Let V=RM QR Q... R, fix j € {1,...,d}, set ni;] = e 7k

The j-th matricisation maps a tensor v € V into a matrix

M; € R"™"]
defined by

M][Z], l[j]] = v[i1, ..., 1] for 1[]] = (41, - .. s 0150541 - yT)-

The isomorphism M : V — R"7”"] is called the j-th matricisation.

Tucker rank or j-th rank:
r; = rank;(v) := rank(M,(v)) for 1 <j <d.

Sometimes, r := (r1,...,7rg) is called the multilinear rank of v.

Example: v € V := R?2 @ R2 ® R? ® R2. Then M>(Vv) belongs to R2*8:

MQ(V): Viii1l Vi112 Vi121 V1122 V2111 V2112 V2121 V2122
V1211 V1212 V1221 V1222 V2211 V2212 V2221 V2222

).



2.2.3 Important Properties

Alternative definition of 7:

’Z}:{VEV:rankj(V)grj for all 1§j§d}.
Later we shall prove:
e Also for dimV; = oo, rank;(v) can be defined.

o 7. is weakly closed.

e If V is a reflexive Banach space, the best approximation problem

e
inf [V =)l = [V = Upeq|

has a solution up.¢ € 7r.



Choice of Vectors b,gj )

Let v € ®§l:1 U;. Representation of U; by

1) generating system {bgj)} with U; = span; bq(;j)

2) basis {111, (r; =dimU;)
3) orthonormal basis (good numerical properties!)

4) special orthonormal basis: HOSVD basis



2.2.4 HOSVD: Higher Order Singular Value Decomposition

Diagonalisation:

rank;(v) _ _ _
1=1

J,Ej): j-th singular values; {bgj) : 1 <4 <rank;(v)}: HOSVD basis(orthonormal!).

1 rd d :
Truncation: Let v= 3 --- 3 aliy,...,ig] ® b)) € Tr with HOSVD basis
i1=1  ig=1 j=1 "
vectors bgj). For s = (s1,...,84) <r set
S S ()
UHQOSVD — Z R Z a[ila 77’d] ® bz € 7
=1  ig=1 j=1

asi-optimality:
Quasi-optimality 12

d 7j AN 2
1/2
v =unosvol < (X X (6P) 7| < a2 v - tpeall  (bes € T5)
j=1i=s;+1



Conclusion concerning the traditional formats:

1. r-term format R,
e advantage: low storage cost rdn

e disadvantage: difficult truncation, numerical instability may occur

2. tensor subspace format 7y
e advantage: stable and quasi-optimal truncation

e disadvantage: exponentially expensive storage for core tensor a

The next format combines the advantages.



3 Hierarchical Format

3.1 Dimension Partition Tree

Example: ve V =V; ® Vo ® V3 ® V4. There are subspaces such that
vespan{v}i CUn®Un CV

/ AN
U{1,2} CU; ®U»y U{3’4} C Uz ® Uy
VAN /N
Uy C Vg U C V> Uz C V3 Ug CVy

Optimal subspaces are Uy, := UT"(v).



Dimension partition tree:
Any binary tree with root D :={1,...,d} and leaves {1}, {2}, ..., {d}.

{1,2,3,4,5,6,7}
T~
(123456} {7}
N
{1,2,3,4,5} {6}
D={1.2.34} SN
{1,2,3,4} {5}
AN 1231 14
/. S\ (1.2} (3)
AN

CLHRZ2E 13| 4 1y

Figure 1: Balanced tree and linear tree

The hierarchical format based on the linear tree is also called the TT format.



3.2 Algorithmic Realisation

Typical situation: U{1,2} C U1 ® Uy (nestedness property).

Bases: U7 = span {bgl)}, U, = span {bgz)}, U{l 0} =  span {bg{l’z})}.
1<i<r 1<j<rp 7 1§€§7°{1,2}

{12}
({1,2}) _ ({1,2},4) (1) o (2)
bg — Z Cij b’ ® bj
1=1
Only the basis vectors b(yj) of U; C V; (1 < j < d) are explicitly stored,
for the other nodes store the coefficient matrices

Oolent) — ( Cg;;z,e)) g R7e1XTap,
iJ

. 1,...d
The tensor is represented by v = clbg{ H,

Storage: (d—1)r3+drn for

C(Oé»@), c1, b,(,j)] (r := maxqdimUgq; n := max; dim(Vj))



3.3 Operations - Example: scalar product

Let v,w € V be given by the data (C’(O‘ ) , el 1//(])) and (C”(O‘ £) , oy Z(])>
resp.

vV = c’lbll(D) = ”b”(D) = (v,w) = cjcf <b’1(D), blll(D)> :

Determine the scalar products 67(;30-4) = <b;(a), b;-/(a)> recursively by

50 = (b bn(a)> <Z (@i)ylar) g piaz) Z //(a,g)b//(a1)®bg(a2)>

I
M /\

;C(Cz Z)Cg(;w) <b;€(0é1), bg(a1)> <b2(a2), bg(a2)>
k0 Dr
_ C;C(,Oé %) //(a’])ﬁl(;l)ﬁ(az)
k.l Pr

(a1, ap: sons of «; B( @) explicitly computable for leaves o = {j}).



3.4 Basis Transformation

Set By = [bga) e b&fjj)]. Let B/, = [bll(a) : ’( )] be another basis.
The sons of o are denoted by a1 and ap.

The relation
B, T\®) =By, (i=1,2)
corresponds to
o'(at) _ plar) o(af) (T(Oéz))T for 1 < £ < rq.

Two directions:

1) Given Bg,, the new bases B/, := Bg, (T(O‘%)) 1 lead to new coefficient
matrices C”(O‘ ) .— 7la1) ola, 6) (T(OQ))T

2) Given Bg%. and a decomposition C/(@:f) = T(a1) . olet) . (T(Oéz))T,
C(@f) corresponds to By, := By, (i),



3.5 Orthonormalisation

REMARK Let o be a vertex with sons a1 and a».
The basis {béa)} is orthonormal, if
(a) the bases {bgal)} and {bgaz)} of the sons are orthonormal and

(b) the matrices C(0) are orthonormal with respect to the Frobenius scalar
product:

(O, glom)) >, <Cg_x,e)7 Cgf,m)> — 5,

Algorithm:
(a) Orthonormalise the explicitly given bases at the leaves (e.g., by QR).
(b) As soon as {bgal)} and {b§»a2)} are orthonormal, orthonormalise the matrices
{Cclah)}.
(

The new matrices Cng\}f) define the new orthonormal basis {bgo:])ew}.



3.6 HOSVD and HOSVD Bases

We recall: The HOSVD basis {bga)} consists of the normalised eigenvectors of
MaM(;r, where My, := M(V) is the a-matricisation of the tensor v.

Instead of {béa)} we need the corresponding coefficient matrices {C’IE%’Q/D}

Step 1: Orthonormalisation of the bases.

Step 2: Recursion from the root to the leaves:

t t
2a) Start at the root: agmo ) .= |c§mo )| where v = ¢

2b) Set

gfroot)bgfroot) .

Bo, = Z(O.q(;a))2c(a,z’)(c(a,z'))H7 Ea, = Z(0.7(;04))2((0(04,2'))HC(a,z’))T.
1=1 1=1
Diagonalisation yields

Eay=US2 UM Ea=VE2 VP with X, = diag{oy"}.

BEPSVD = Bq,U and BQSSVD = Ba,V are the desired HOSVD bases.

Arithmetical cost:  O(dr* + dnr?).



3.7 HOSVD Truncation

Represent the tensor v with respect to the HOSVD bases {bga) 1</t < ra}.

Choose smaller dimensions

So < To-

Omit all terms corresponding to {béa) 1 8q < £ < ra} . Result: vHosvD-

Then the following estimates hold:

1/2
[V — vhosvpll < (Z ) (01(/0‘))2) < (2d = 3)2 v — Vpestl| -

& p>sa+1



4 Solution of Linear Systems

Linear system
Ax = b,

wherex,b € V = ®3-l:1 Viand A € ®7_; L(V},V}) C L(V, V) are represented
in one of the formats (e.g., A: r-term format, x, b: hierarchical format):

Standard linear iteration:
x™tl = x™ — B(Ax™ — b).

— representation ranks blow up.

Therefore truncations 1" are used (‘truncated iteration’):
x™tl — 7(x™ — B(T (AX™ — b))).

Cost per step: ndx powers of the involved representation ranks.



x™tl = 7 (x™ — B (T (AX™ — b)))
Choice of B:

If A corresponds to an elliptic pde of order 2, the discretisation of A is spectrally
equivalent = B = B, from above has a simple r-term format.

Obvious variants: cg-like methods
Literature:

Khoromskij 2009, Kressner-Tobler 2010, Kressner-Tobler 2011 (SIAM),
Kressner-Tobler 2011 (CMAM), Osedelets-Tyrtyshnikov-Zamarashkin 2011,
Ballani-Grasedyck 2013, Savas-Eldén 2013

Remark: For d = 2, these linear systems may be written as matrix equations:

(AQI+1I®A)x=b < AX+XA=B (Lyapunov)
(cf. Benner-Breiten 2013).



b Variational Approach

Define
d(x) := (Ax,x) — 2 (b, x)
if A is positive definite or
2
d(x) := ||Ax — b||
or
2

¢(x) := [|B (Ax —b)]|
and try to minimise ®(x) over all parameters of x is a fixed format.
Literature:

Espig-Hackbusch-Rohwedder-Schneider, Falcé-Nouy,
Holtz-Rohwedder-Schneider, Mohlenkamp, Osedelets,...



5.1 Formulation of the Problem, ALS Method

Let
®(u) = min

be a minimisation problem over the whole tensor space u € V.

Approximation: Choose any format 7 C V. Solve

®(u) = min over all v € F.

This is the minimisation over all parameters in the representation of v € F.

Difficulty: While the original problem may be convex, the new problem is not.



Example: ®(u) = ||v — u|? over all u € Ry = T(1,..1)- vV € V is arbitrary.

Ansatz:
u=uMeu@e.. oud ey, =RY

Necessary condition: V®(u) = 0 (multilinear system of equations).

ALS = alternating least-squares method:
1) solve V(b(u(l) Y U(2) XK...xQ u(d)) = 0 w.r.t. u(l) = solution: ,&(1)’
2) solve Vo) @ u® @ ... @ uld) = 0 w.r.t. ul® = solution: a2,

d) solve Vo(al) ® ... @ 44" @ ul®) = 0 w.r.t. ul® = solution: a(?)

All partial steps are linear problems and easy to solve.

One ALS iteration is given by ug = v @ ... @ vl — u; = 0V @ ... @ a().
This defines a ALS sequence {um : m € Ng}.

Questions: Does u,, converge? To what limit? Convergence speed?



5.2 First Results

Mohlenkamp (2013, Linear Algebra Appl. 438):
e The sequence {u;, : m € Ny} is bounded,

¢ [[um —wppaf — 0,

X 2
e > ||um_um—|—1|| < 00,

m=0

e the set S of accumulation points of {u,,} is connected and compact.

Conclusion: If S contains an isolated point u*, it follows that u,, — u®*.

Note that, in general, the limit may depend on the starting value!



5.3 Study of Examples

5.3.1 Caseof d =2

vi=(g)®(g)+2(0) @ (3), @) =|v—ul?

1) u** = 2((1)) ® ((1)) is the global minimiser and an attractive fixed point.
2) u* = (é) ® (é) is a fixed point of the ALS iteration:

o +81® (1)) = S(u") + 51

sut o () @ (1)) = o(u) - 2 (2 12)
= u* is a saddle point and a repulsive fixed point.

Conclusion: Almost all starting values lead to u,;, — u™*.



5.3.2 Caseofd>3

For a_Lb with ||a|| = ||b|| = 1 consider ®(u) = ||v — u|? with

v==3a+2x30.

Again u* = ®3a and u** = 2 @3 b are fixed points, d(u**) < d(u*).
But now both are local minima (attractive fixed points)!
Additional saddle point (repulsive fixed point): u*** = ¢ ®3 (a + %b)

The sequence {u;,} corresponding to the starting value

ug = 0 (a + t§°>b) ® <a + tgo)b> ® (a + tgo)b>
(0) (0

is completely defined by ¢5" and #3 ). The characteristic value is

af B
(I ™ with =521 g=2.

Tm — 't

(A) 79 > 277, v =524+ 1 = u;, — u*™* (global minimiser),

(B) 70 < 277 = um — u* (local minimiser),

(C) 79 = 277 = uym — u™™* (saddle point, global minimiser on the manifold
T=277).



We recall:

Conclusion: If the set of accumulation points of {u;,} contains an isolated
point u*, it follows that u,, — u®*.

Wang—Chu (2014): Global convergence for almost all ug.

Uschmajew (2015):

Analysis based on the Lojasiewicz inequality yields:
All sequences u;, converge to some u* with Vo(u*) = 0.
t ojasiewicz (1965, Ensembles semi-analytiques): If ® is analytic,

36 € (0,1/2] |®(x) — D(zs)| 0 < || V()|

in some neighbourhood of x.



Convergence speed?
The proof by the Lojasiewicz inequality is not constructive.

Espig—Khachatryan (2015): Study of sequences for ®(u) = ||v — ul|? with

v = 8%+ (a®a®b+a®@b®a+bRa®a),
alb, lall = [[o]] = 1.

Depending on the value of ) it is shown that the convergence can be
e sublinear (A = 1/2),
e linear (A < 1/2).

For v=Q®3a+23 b, um — ®3a or 2 ®3 b, we have
e superlinear convergence (of order 2 + 51/2 > 1)

Study of the general case: Gong—Mohlenkamp—Young 2017



6 Multivariate Cross Approximation

Matrix Case

Problem: given M € K> find a rank-r matrix R, close to M evaluating only
O(r(#1 4+ #J)) entries.

Choose r rows (index subset 7 := {i1,...,4r} C I) and r columns (index subset
o:={j1,.---,4r} C J).

S x E S
* * B8
* % *k % *x >k % > 3k X
ES S ES
M — * * *
* % >k X x % 3k %k X X
£ S £ B
* %k %k *x *x % >k %k *x X
S S E S
* * B8 |



Then, a matrix R, of rank r with
R[i, j] = M]i,j] for all index pairs with either i € T or j € o
Is given by
Ry = Ml7ws - (M|7-><a)_1 - M| g,

provided that the r X r matrix M|« is regular.

ES * B

£ £ ES
* % %k *x *x % 3k % *x X

S X E S

M — £ *x B
* % %k *x *x % >k % *x X

£ S ES
* % >k *x *x % 3k %k *x X

E S B *

£ £ ES

If rank(M) = r, there exist subsets 7, o such that M|, « is regular and R, = M.

Adaptive Cross Approximation (ACA): adaptive choice of 7, 0.



Generalisation to order d > 3
- hierarchical format

- Apply the previous idea to all matricisations

M = Mqu(v).

- M is large, but the matrix (M|;x) "1 is still of size 7 x 7.
Then:
Required number of evaluations of the tensor is O (Zj #Ij)).

If v has hierarchical rank v := (ranka(V))qery,, it can be reconstructed in He
exactly.

Suited for applications to multivariate functions.



EXAMPLE: Approximation of a special multilinear function

Boundary-element application. Solution of —Awu = 0 in Q C R3 with boundary
[. Ansatz functions: piecewise constant functions for a triangulation 7.

Galerkin matrix:

drsdl
MA/A//_// // Ay (a, A" eT).
AN ||x =y

Difficult cases: A’ N A" £ (.

Case of one common side.
W.l.o.g. the corners of A’ are (0,0,0), (1,0,0), (z,y,0), while those of A" are

(07070)1 (17070)' (577777_)'
= MA’A” = f(w,y,f,n,T).

Tensor approximation faster than quadrature by a factor of 630 to 2800 (cf.
Ballani 2012).



7 PDEs with stochastic coefficients

Literature: Espig-Hackbusch-Litvinenko-Matthies-Wahnert: Efficient low-rank
approximation of the stochastic Galerkin matrix in tensor formats. Comput.
Math. Appl. 67 (2014) 818-829

7.1 Formulation of the problem

Boundary value problem in D C R% (1 < d < 3):

dive(z,w)gradu = f forx € D,w € Q,
v = 0on 0D.

Assumption (log-normal distribution):

k(x,w) = exp(y(x,w)), ~v Gaussian random field.

Solution u = u(x,w) € L?(Q, H3(D)).

Weak formulation: a(u,v) = f(v) for all v € L?(Q, H&(D))



Stochastic quantities:

Mean functions:

me(z) = E(k(z,)),
my(z) := BE(y(z,-)),

covariance functions:

(2, y) = B(k(z, ) = me(2)) ((y, ) = mx(y))],
Fy(z,y) = El(v(z, ) —my(x)) (V(y, 1) = my(y))].-

Interconnection:

m~(z) = 2logmeg(x) — % log (F,{(:I:, x) + m,g(:c)z) :

rﬁl(xa y) ) .

() me(y)

[y(z,y) = log <1—|—



Singular value decompositions (sums restricted to positive singular values):

Rz, w) == vz, w) —me(z) = 3 (A)Y? rp(z) dp(w),
k

5(2,w) = (z,w) = ma@) = 3 (M) (@04 ().
k

The L?(D) orthonormal system {k;} are the eigenfunctions of the Hilbert-
Schmidt operator

Cx € L(LA(D), (D)), (Cu) (@) = | Tx(zm)e(u)dy,
Cﬁ;lik = )\kﬁlk.

Similarly,

Cy € L(LAD), LAD)),  (Cre) (2) = [ To(a,y)e(y)dy,
Cyvg = A;ﬂk-
Furthermore,

~1/2

O4(w) = | bi@,w) = ma(@)] v (a)da

are jointly normal distributed and orthonormal random variables in L?(Q).



Uniform ellipticity:

In the following, we assume that

> (M%)

k

1/2
1Ykl oo < 0.

Then one can show that
0 < k< k(z,w)

holds almost surely and for almost all z € D.

Consequence: Sufficiently small perturbations of x(z,w) do not change the

ellipticity of the problem.



Multivariate Hermite polynomials L?(Q):

o
Hy(x) := ][ hu(zg) for ¢ € £o(N);
k=1
h; : i-th Hermite polynomial,

o(N) == {t = (tg)renN : i € Np, ¢, = 0 for almost all k£ € N};
Set

0 = (01)rcN orthonormal system in L?(9).

Then {(1,!)_1/2 H,(0):¢L € EO(N)} is an orthonormal basis in L?(Q) and

B (s(r, ) (1) 2 H(8)) = ma(@) T, (%) @) " () /2

(cf. Janson: Gaussian Hilbert Spaces, 1997; Ullmann: PhD thesis 2008).



The expansion of

f=r-—me= 3 S &M V2k, 0 H(0) € L2(D x Q)
Lely(N) LeN

into the orthonormal basis

{2k @ H(B) : L € £p(N), £ € N}

has the coefficients
&= ()72 [ r@)B (e, ) Hu(6)] da
= [ m@ma@) T ()2 @) ) ()2 de
b0, /D k() m(z)dz

(dg,: Kronecker delta).



7.2 Discretisation

Spatial discretisation: subspace Vi C H&(D) spanned by

{e1, - on}-

Stochastic discretisation: subspace S; C L?(Q) spanned by

{H,(0) :v€J} with #J < oo, pp=max{:t € J}.

Galerkin discretisation:

a(p; ® Ha(0), p; @ Hg(0))
= bap /D ma(z) (Vei(), Vo;(z)) do

+ i &) - E(H.(0)Ha(0)Hg(0)) - /D ke(z) (Voi(2), Vo)) da
/=1



Stochastic Galerkin matrix:

K = (a(%; ® Ha,pj ® Hﬂ))(i,a),(jﬁ)

K K
=K@+ Y Y Ko @A, e BV Vg @ROFDX0i
¢ ed k=1 k=1

with

K := max{k : ¢, > 0 for some ¢ € J},
(A 05 = B(H, (0p) Ha(0p) Hg(0r)), Ay, € R @1t

(K0)ij = [ ril@) (Vi) Voj(a)) do, Ky e RNV,

(Ko)yj = [ mn(@) (Vei(e), Voj(@)) do, Ko € RNV,

The size of the stochastic Galerkin matrix is

(N' ﬁ(pk+1)> X (N' ﬁ(pk+1))-

k=1 k=1



Truncation of £ € N in

K
K=K®A+5> ¥ WK, 0® a,
teNweJ k=1

tol €{1,..., M} yields a finite expression

M 0 K
KreL:i=Ko®@Ag+ > Y 7K Q) A,

{=1.1eJ k=1
n n n - w
The approximation error is proportional to ). \p — 0.
(=M+1

Question: What is a suitable representation of the huge matrix L or its
approximation?

Later numerical example:
N =1000,p=10, K =20 = N (p+1)?0~x6.7 x 103,



7.3 Tensor rank of the stochastic Galerkin matrix

1+ M - #J terms are involved in

M K
L:=Ko®@Ag+ Y, > &, Ki®Q A,
(=1.cJ k=1

Assume that we can approximate the tensor
K
¢ e RM g Q) RPefl
k=1
by 7 in R-term format: 1 = Zﬁ:l [y§.0) R ®]~§:1 y§k)] ;l.e.,

R

n&LZZE:

j=1

K

<y§o)> 11 <y§k)) with y§0) e RM and y§k) e RPet+L
b k=1 Uk

Then
R M K
=1 \/=1 k=1 \ bk

i.e., L has an (1 + R)-term representation: L € Ri+R-
= also the other ranks (Tucker, hierarchical format, TT) are < 1+ R.



Interludio:
_ 1wl _
Vi=K9, V=0;V;
For each i, € I; is associated to a function f(]).

The tensor v € V is defined by

V[ig, ... i = /H 1 (@)dz.

Then quadrature yields
LT 0)
vliz, .o ial & Vlins o dal = 3 we I S5 ()
=1 j=1

Set ’U(]) : (f(])(a: )) o € V;. Then v[iq,...,iq] = ZE 1(,<JgH] 1v€])[z]]
: v~
ie.,



Explicit description of &:

&ui= | mel@)ma(e) kﬁl { [(A%)%’yk(x)] N (%!)—%} do—bo, [ mew)ma(e)de.

Apply a quadrature to [ - - - dax: Epy RNy =

R K R
> wikg(zi)me(z;) 1] {[()\;{)1/2,%(%)] k(bk!)_1/2}_50,b > w 1T )M (T ).
j=1 k=1 =1

This yields the desired (R + 1)-term representation of 1) :
0
(y§ )>£ = wj ky(Tj) me(z)),
k L _
(58) = [0 2] @)™V @<k < K)
Lk

forl1 <j3 <R.

The additional term for ; =0 is

<y((30))e = —jlzfijl w it kp(T 1) mi (1), (yc()k)>bk =80,



The error || — || (quadrature error) does not depend on J (i.e., on K and
Pk)-

Final problem:

R
7=0

Let B the approximate inverse of the discrete Laplacian. Then
and (B ® I) L is well-conditioned.



Numerical results with

[k(z,y) = exp(—a? ||z — y||?),

1
— covariance length,
a

Gaussian quadrature with S points per direction:
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8 Minimal Subspaces

8.1 Definitions

We recall the definition of the algebraic tensor space:

d
V = span {@v(j) o) ¢ V]} =!a

j=1

Vi

d
=1

J
Here, dim(V;) = co may hold.

Question: Given v € V, are there minimal subspaces Ujmi”(v) C Vj such that

d .
v € QUM(v),
j=1

d .
v € QU; = UM(v)CUj.
j=1

Such subspaces are the optimal choice for the tensor subspace representation
(Tucker).



Elementary results:

1) There are finite-dimensional U; with v € ®§-Z:1 U;, more precisely
dim(U;) < rank(v).

2) ve®],Ujand v e®],Uf imply v e, (UjnUj).

3) The intersection of all U; with v € ®§-i:1 U; yields Ujmi”(v).

Characterisation of Ujmi”(v) in the finite-dimensional case:

Ujmin(v) = range(M;), where M, := M (v) (matricisation).

The characterisation in the general case needs some notation.

Vj’ dual space of V;. Consider ol = Rk~ (k) with k) ¢ VL.
go[j] can be regarded as a map from V = (X)g:l V), onto V; via

Ui (é U(k)) _ (H SO(k)(v(k))> )

k=1 -y

If V; is a normed space, V* denotes the continuous dual space (V" C V]’)



Characterisations:

N\

Ujmin(v) _ go[j](V) : S0[‘7'] ca® Vk/} ,
\ k7]

p

UMt (v) =

N\

p(v): ¢ € <a®vk) ;

k#j
although o @, V7 is strictly smaller than (o ®p-£; Vi)' in the general

\

infinite-dimensional case.

If Vi, and/or ¢ @, Vi, are normed spaces, even

7\

U]min(v) — go[j](v) . ol e, R Vk*} 7
k#j

p(v): ¢ € <G®Vk) }
\ k#j

UM (v)

N\

holds.



8.2 Topological Tensor Space

(V:j, ||||]> are Banach spaces. The topological tensor space V := -] ®§_l:1 Vi is

the completion of the algebraic tensor space 4 ®§-l:1 Vi w.r.t. a norm |-]|.

A necessary condition for reasonable topological tensor spaces is the continuity
of the tensor product, i.e.,

® (7)

for some C < oo and all v(]) c V.

<o 1 |,

DEFINITION: ||-|| is called a crossnorm if

d d
Qv = T [ .
j=1 j=1 /

REMARK: There are different crossnorms ||-|| for the same ||-||;!



Reasonable Crossnorms

||||;k dual norm corresponding to |||, i.e. ||g0||;‘ = max{|e(v)| /[[v]]; : O
v eV}

DEFINITION: ||-|| is called a reasonable crossnorm if

d
02 o(7)
J=1

_ HH D for v ey ane

(4) for 7)€ v

d
- 1|
]:

There are two extreme reasonable crossnorm. The strongest is the projective

m d
| V]|, := inf v
i—1 j=1

The weakest is ....

norm

£ 60|

i=1j=1




DEFINITION. For v e V = o ®9_; V; define |||, by

‘(go(l) ... ® go(d)) (v)‘
IVllv =500\ = 01,00 Ol
[ B | D R L2
(injective norm [Grothendieck 1953]).

0¢wWEV$1<j<d}

THEOREM. A norm ||-|| on ¢ ®%_; V; , for which

d d

®j:1 : V1><...><Vd—>a®j:1Vj and
d d

®j:1 : V1*><...><Vj—>a®j:1Vj*

are continuous, cannot be weaker than ||-||,,, i.e.,

1= MMy - (norm)



We recall the definition of go[j] = k) w(k) (go(k) S Vk/) by

i (é U(k)) _ (H SO(fc)(,u(/f))) ),
k=1

-

LEMMA. ¢ € a®ke{1,...,d}\{j} V}* is continuous, i.e., p € L (\/ (X)%:l Vi, V]) .
Ilts norm is

_ * || ¥
ke{l,....d}\{j}

Consequence: ¢ € o Qpeq1,.. da\{;j} V; is well defined for topological tensors

vV € \/(X)g:l Vi . The same conclusion holds for stronger norms than |||/, in
particular for all reasonable crossnorms.



Assume [|-|| Z [|]]y-
MAIN THEOREM. For vy, € o ®9_; V;j assume v, = v € ||| ®%_; Vj. Then

dim UM (v) < liminfdimUM"(v,)  forall 1 <j <d.

n—oeo

THEOREM. The sets 7y and Hy are weakly closed.

PROOF. Let v,, € Ty, i.e., there are subspaces Ujn with v, € ®§l:1 Ujn and
dim Uj , < ;. Note that UM"(vp) C Uj ,, with dim UMM (vy) < 7.

If vi, = v, then dim U; in(v) < r; and therefore v € 7r. Similar for Hr.



Application to Best Approximation

THEOREM. Let (X, ||-||) be a reflexive Banach space with a weakly closed subset
0 # M C X. Then for any x € X there exists a best approximation v € M
with

|z — v|| = inf{||x —w| : w e M}.

LEMMA A. If z, — x, then ||z|| < liminf ||zy]| .

n—oo

LEMMA B. If X is a reflexive Banach space, any bounded sequence x,, € X
has a subsequence xy, converging weakly to some x € X.

PROOF ofthe Theorem. Choose wy € M with ||z —wp|| — inf{||lz—w||: we M}.
Since (wn),cy is a bounded sequence in X, LEMMA B ensures the
existence of a subsequence wn, — v € X. v belongs to M because wn;, € M
and M is weakly closed. Since also z — wn, — = — v, LEMMA A shows
|z — ol <liminf ||z —wny,|| <inf{|lz —w||:w e M}.

Conclusion for M € {7y, Hr}:

COROLLARY. Let ||| satisfy ||-]| 2 ||:|l, and let (V,||-]|]) be reflexive. Then
best approximations in the formats 7 and Hy exist.



9 Properties of the HOSVD Projection

We recall: The Tucker and hierarchical representation may be based on the
HOSVD bases {béa) 1<e< ra} . The HOSVD projection is of the form

b\ for 1 < £ < sa,

P = Po® Pue Withp@bﬁa):{ 0 forsg<t<r
(8% _~ (8%

Let

uyosvp = Pv.

LEMMA. Let ¢;v = 0 for some ¢; =id® ... ® ¢, ®id® ... ®id, p; € Vj’.
Then also gbjuHOSVD = 0.

LEMMA. If v € V belongs to the domain of ¢;, then also upgsyp belongs
to the domain and satisfies

HsbjuHosvoH < H%’VH.

Application: Hc?ku|_|os\/[)/(‘9w§?HL2 < H(‘?kv/axﬂ‘p.



L°° Estimates

Problem:

e HOSVD projection uses the underlying Hilbert norm (L?)

e Pointwise evaluations require the maximum norm (L°°)

Gagliardo-Nirenberg inequality:

d 1_d

|6lloo < cm @7 llll 2>, where
1/2
o (/ zd: el ) /
Plm — | dx .
Qj:l 8:1:j
For Q = RY? we have
lim cq%zw_d/%

m—00



10 Graph-Based Formats

10.1 Matrix-Product (TT) Format

{1,2,3,4,5,6,7}
T
{1,2,3,4,5,6} {7}
N

{1,2,3,4,5} {6}
—

{1,2,3,4} {5}
N\

{1,2,3} {4}
N

{12} {3}
AN

A particular binary tree is {1} {3 . It leads to the TT format
(Oseledets—Tyrtyshnikov 2005) and coincides with the description of the matrix
product states (Vidal 2003, Verstraete—Cirac 2006) used in physics:

Each component v[iq,...,i4] of vE V = ®?:1 K™ is expressed by

viigio---igl = MMig] - MO)ig] - .- M@, ] MWD e K,

where M(9)[4] are matrices of size rj—1 X rj with rg =rgy = 1.



To avoid the special roles of the vectors M1 [i1], M(4[;;] and to describe peri-
odic situations, the Cyclic Matrix-Product format C(d, (), (n;)), nj = dim V},
Is used in physics:

v[igip- - - ig] = trace{ MI[iy] - MP)io] - - M@V, 11- MO
1 rd

= D D Mkdkl(l)[h]'M;g;)@[iz] MUY ] My, D)
ki=1  kg=1

Tensor Network: tensor representations based on general graphs.

THEOREM (Landsberg—Qi—Ye 2012) Formats based on a graphs#tree are in
general not closed.



10.2 Intermezzo: Algebra Structure Tensors

V' algebra, i.e. vector space with additional operation o, {b;.} basis of V.
The operation is completely described by the coefficients s; . in

k
Let bF € V' the dual element with <Zk b, b;k> = «;. Then
s:= Y s8R QI Q@bL eV @V @V
1,7,k

is the structure tensor of the algebra.
Remark. For v,w € V we have vow = (v ® w ® id) s.
Proof: Let v =3 ; v;b; and w = > ; w;b;. Then

(vRw®id)s = > siik (v, b7) <w, b}k> b = > _ 8 kViW b = > viw; Si;kbk
b5k 4,45k ] k

Z v;w;b; 0 b = (Z vibi> o (Z wjbj> —vow.
1,] 2 '

J



Matrix Multiplication

Consider V = K2%2 o = x is the matrix multiplication.
Thebasisof Vis{Epq : 1 < p,q < 2}, where Epqlt, 5] = {

LEMMA. The structure tensor of the matrix multiplication is

Y S‘ S: 1122®E:223®Ei177;3EV,®V’®V
11=110=113=1

Proof. Let A, B € K2%2 and C := AB. Then

(A® B®id)m = Z AirinBig iz Py iz = Z i1,iz iy i3 =

11,22,23=1 11,03=1

THEOREM: rank(m) = rank(m) = 7.

Strassen, 1969: rank(m) < 7; Winograd, 1971: rank(m) = 7;
Landsberg, 2012: rank(m) = 7.

1 for (4,5) = (p,q)
0 otherwise.

C.



10.3 Cyclic Matrix-Product Format

We recall the Cyclic Matrix-Product Format C(d, (;), (n;))

v[igip - - -ig] = trace{MM[iy] - M@)ig] - .- MU=V, 4] MWD
1 rd

= 3 > M) [i]- M) li2] - MU D] M g,
ki=1  kg=1

A subcase is the site-independent format Matrix-Product Format C; 4(d,r, n)
with

MU = M[]

Tj = T,
Vi, =V for all 7,
n = dimV.

THEOREM (Landsberg—Qi—Ye 2012) Formats based on a graphs#tree are in
general not closed.



10.4 Result for d = 3, V = ®3K?*2 r; = r5 = r3 = 2 by
Harris—Michatek—Sertoz 2018

Let

2 3

- }: 2X2

= Bz by © Bogyky © By ky € Q) K=<,
k1,ko,k3=1 7=1

{Epq : 1 < p,q <2} is the canonical basis of K2%2,

LEMMA. Let V = ®?—:1 K2%2, The set C(d = 3, (rj = 2),(n; = 4)) consists
of all

3
v=ao(m) with =) ¢U) and ¢\ e L(K>*? K>*?).
j=1

REMARK. a) m is equivalent to the Strassen tensor of the matrix multiplication.
b) If all $(9) are bijective, v = ®(m) implies that rank(v) = 7.



We consider the site-independent case MU)[;]=M[i] for all 1<j<d := 3.

Define ¢ € L(K?*2 K2%2) by (E12) = E1p = [8 é] and ¢(Epq) =0 for

(p,q) # (1,2) and
v(t) = (@2 +t-id)) (m) = vo+t-vi+ 2 v+ V3 € Cina(3,2,4)
with
vo=(@)(m), vi=[®yYQid+Qid® 1+ id® ¢ @ ¥](m),
Vo=[d®idQ Y +id Q@Y Q@id+ ¢ ® id @ id](m), V3 = m.
= vg=v1 =0 and

Vo = k1 @ E11 ® E1o + Eoo ® Eo1 @ E1p + E11 ® E12 @ Eog
+ E21 ® E12 ® Eop + E1p ® Ep1 ® E11 + E12 ® Eoo @ Eoy,

= rank(vp) < 6. The following limit exists:

vy = tllno t2v(t) € closure(Cing(3,2,4)).



The non-closedness of C;,q4(3,2,4) will follow from vy ¢ C;q(3, 2, 4).
For an indirect proof assume vy € C;,4(3,2,4). The Lemma implies that there

is some ¢ € L(K?%2,K?%2) with vy = (®3¢)(m).
It is easy to check that the range of the matricisation

M1((®3¢)(m)) = pMy(m)(®2¢)"

is K2%2, Therefore the map ¢ must be surjective.

Since ¢ € L(KZXZ,K2X2) Is surjective, it is also injective and thus bijective.
By Remark (b) rank(vo) = rank(m) = 7 holds in contradiction to rank(vy) < 6.
This contradiction proves that vy & C;h4(3,2,4).

Similarly vy € C(3,(2,2,2),(4,4,4)) follows (no site-independence).



10.5 Result for V = ®4C2, rj =2

Smallest (nontrivial) dimension: V; = C?,

tensor space V = Q4(C?

Site-independent cyclic format C;,4(d,2,2), i.e., 7 = 2

Result:

d=3":Cq(3,2,2) is closed (cf. Harris—Michatek—Sert6z 2018)
d > 3:Cig(d,2,2) is not closed (cf. Tim Seynnaeve 2018)

Same for K =R



Extension to Larger Spaces

d>4:
Cind(d, 7 = 2, = 2) not closed = C;,q(d,” = 2,n) not closed for all n > 2.

Missing case

Cind(3,2,2) closed, C;,q(3,2,4) not closed
Also C;nq(3,2,3) is not closed (Tim Seynnaeve, technical proof).

Caseof r > 3

Veyer ={veV:inmv=v}form:(1,2,...,d)—(2,...,d,1)
Let d >3, n>2, K=C or d odd:

a) Cing(d, r,n) not closed for r = 2

b) r sufficiently large = Cing(d, 7, n) = V yq = Cing(d, 7, 1) closed.

Another reason for closedness of C;,4(3,2,2) (Proof: Tim Seynnaeve):

Cind(3,2,2) = chcl'



11 Tensorisation

Vj = R" = storage: rdn + (d — 1)r>. Now: n — O(logn)

Let the vector y € R" represent the grid values of a function in (0, 1]:

p+1
yqu(T) 0<pu<n-1).
Choose, e.g., n = 2d, and note that R" =V : = ®§l:1 R2.
Isomorphism by binary integer representation:
L= z;l:l 20~ with p; € {0,1}, ie.,

Yu = VI[p1, 1oy -5 g—1, ).

Algebraic Function Compression (black-box procedure)

1) Tensorisation: y € R™ — v € V (storage size: n = 2¢)

2) Apply the tensor truncation: v —— v¢

3) Observation: often the data size decreases from n = 2% to O(d) = O(logn).



EXAMPLE

y € C" with y, = (" leads to an elementary tensor v € V, i.e.,

1

d
v=_) (9 with o) = [ 2-1 | € C2.
=1 ¢

Storage size = 2d = 2logy n.

Consequence:

All functions f € C((0,1]), which can be well-approximated by r trigonometric
terms or exponential sums with r terms (even with complex coefficients —
Bessel functions) can be approximated by a tensor representation with data size

2dr = O(rlogn).



Example:
f(x) =1/(x+9) € C((0,1]), § > 0, can be well-approximated by exponential
sums (cf. Braess-H.):

f(x) ~ ZZZI ay exp(—byx) (av, by, > 0)

error: O(n exp(—21/27rr1/2)) if 6 =0,
O(exp(—cr)) if 6§ =O(1).

Storage size:

2dr = 2rlogyn = O(log?() log(n))



Hierarchical Format, Matricisation

1 — {12} — {123} — {1,...,d-1} — {1,....d}
Tree: / e S /
2 3 4 .. d
(also called TT format)
Consider the tensorisation v € ®?:1 R? of the vector y = (yo,---,Yn—1) € R™
The matricisation for a = {1,...,5} (1 < j < d —1) yields
L Y0 Ym o Yn—m |
Ma(v) = :yl ::ym“Ll ?n_m+1 with m = 27.
L Ym—-1 Y2m—-1 ° Yn-1 i

Recall: rankq(v) = dim My(v).



p-Methods

~ r .
f(z) ~ f(z) = 3 ape?™¥ 1) trigonometric approximation
k=1

=> tensorisation, storage 2dr = 27 logs n, error < Hf — f

~ T
Similar for f(x) = Y ajsin(27ik) etc.
k=1

Polynomials:
f(x) = P(x), P polynomial of degree < p

r d -
An r-term representation ). & v,gj) does not work well.
i=1j=1
Instead, the hierarchical format (in particular, the TT format) is used.



Conclusion for polynomial p-methods

If f ~ P with a polynomial P of degree < p (= data size p + 1),
then the tensorised grid function f can be approximated by a tensor f such that
the TT ranks are bounded by p; <p+1:

|t =, <1f =P,
The data size is bounded by
<2d(p+1)2.



hp Method

Let f be an asymptotically smooth function in (0, 1] with possible singularity at
r=0,eg., f(r)=2x". )
Use the (best) piecewise polynomial approximation f (by degree p) in all intervals

1 1 2 2 4 11 1
[07 ﬁ]a [ﬁa ﬁ]? [ﬁa ﬁ]a R [Za j]a [Q? 1]‘
Required data size of hp method: (p + 1) log, n.
Tensor ranks:

ry < dim(span{fly,—1ynum) 1 < v <n}) <p+1
ro < dim(span{flj,—1)2n,u2n 1 S <5} <p+2
r3 < dim(span{ flj—1)anpuan) 1 S <7} <p+2

Hence, the data size of the tensorisation of f is bounded by

d(p+2)° = (p+2)*logyn.

THEOREM (Grasedyck 2010) f asymptotically smooth with m point singulari-
ties. Then the data size of v corresponding exactly to a piecewise polynomial
approximation is characterised by

r = 0O(1) + log, % + 2m.



