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Decomposition algorithms

Univariate series:

Kronecker (1881)
The Hankel operator

Ha . CN,finite N CN
(Pm) = (O Tm+nPm)neN

is of finite rank r iff 3wy, ...,w, € Cly] and &1, ..., & € C distincts s.t.

o) = Y onlr = Y uily)ee(v)
i=1

neN

with 37 (deg(wi) +1) = r.
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Decomposition algorithms
Multivariate series:
Theorem (Generalized Kronecker Theorem)

For o = (01,...,0m) € (R*)™, the Hankel operator

Hy :R — (R*)™
p = (p*xo1,....,px0m)
is of rank r iff

ij, y) € PolExp, j=1,....m

. r, .
with r =% i 4 (wii,...,wm,j). In this case, we have

V(C( ) {Elv"wgr/}'
0' = Ql Mooef Qr’ with Q,L = <<OJ1’,', cee 7wm,i>> eﬁi(y)'

If m=1, A, is Gorenstein (A% = A, x o is a free Ay,-module of rank 1)
and (a, b) — (c|ab) is non-degenerate in A,.
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Decomposition algorithms

The decomposition from the algebraic structure

Decomposition problem

Given a (truncated) sequence of moments o, o € A, find
>N - - =
& = (81,681,560 € K disctint, w; € K. s.t. 0=, wjeg,

Hankel operator: For o € R*,
H,:R — R*
p — p*xo
Quotient algebra: A, = R/l, where I, = ker H,.

0=l > Kx] 2= A o0
p +— pxo
Isomorphism between A, and A’ = [} .

(A, Gorenstein, i.e. 31 =0 € A} s.t. A% = Ay*T is a free A,-module).
1= Find the points &; as the roots of /, and the weights w; from the

idempotents of A,.
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Decomposition algorithms

The structure of A,

For o =3 ; wieg, with w; € C\ {0} and & € C" distinct.
» rank H, = r and the multiplicity of the points &1,...,& in V(I,) is 1.
» For B, B’ be of size r, Hf/’B invertible iff B and B’ are bases of

Ay = K[x]/1,.
» The matrix M; of multiplication by x; in the basis B of A, is such that

B'xB _ yB'.B _ 4B',B
H(I = Hx;*cr - HU = M;
» The common eigenvectors of M; are (up to a scalar) the Lagrange
interpolation polynomials ug, at the points &, i =1,...,r.
1 ifi =, 5 .
ufi(fj):{ 0 otherwise Ug™ = Ug, Zl;:l ug = 1.

» The common eigenvectors of M} are (up to a scalar) the vectors

[B(&)], i=1,...,r.
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Decomposition algorithms

Decomposition algorithm

Input: The first coefficients (04 )aca of the series

.
o= Uag = wieg(y)
’ i=1

aeN”?

® Compute bases B, B’ ¢ (x*) s.t. that HE"E invertible and
Bl = |B'| = r = dim A,;
@ Deduce the tables of multiplications M; := (Hf,’B)_le,’X’B

@ Compute the eigenvectors vy, ..., v, of Y. [;M; for a generic
I=hxy+ -+ Ipxp;

@ Deduce the points & = (§i1,...,&in) s.t. Mjv; — & jv; =0 and the

weights w; = ﬁ((ﬂvi).

Output: The decomposition o =371 ; - (5 ylolvi)ee (y).
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Decomposition algorithms

Demo
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Decomposition algorithms

Multivariate Prony method (1)
Let h(tr, t) = 2 +32 235, 0 =3 . h(a)

Take B = {1, xy,x2} and compute

yOé
ol

= 2e(1,1)(y) + 3e2,2)(¥) ez, 1) (¥)-

h(0,0) h(1,0) h(0,1) 4 5 7
Ho := HE:B = | h(1,0) h(2,0) h(1,1) | =|5 5 11 [,
h(0,1) h(1,1) h(0,2) 7 11 13
5 5 7 7 11 13
Hy:=HBxB=| 5 1 17 | Hy:=HBE*B=1| 11 17 23
811 178 23 13 23 25
Compute the generalized eigenvectors of (aH; + bH,, Hp):
2 -1 0 2 3 -1
u=| -1/2 0 1)2 and HHU=| 2x1 3x2 —-1x3
-1/2 1 -1/2 2x1 3x2 —-1x1

This yields the weights 2,3, —1 and the roots (1,1),(2,2),(3,1).

B. Mourrain

From moments to sparse representations

9/39



Decomposition algorithms

Multivariate Prony method (2)

h(tl, t2) = Ele w;eﬂt1+f—2t2 with

—0.5 1.0 4 3.141592654 i 1.375328890 + 0.9992349291 i
0.1 + 21.36283005 / 1.5 4 32.67256360 / 1.046162168 + 0.3399186938 i
= 0.1 + 21.36283005 / —0.5 + 79.16813488 i Y 0.9
—2.5 4 145.7698991/  —10.0 + 517.1061508 / —9.2

. B.B .
For the sampling [5—10, ﬁ] B ={1,x1, x2, x1x2}, the SVD of H;"" is
[33.1196344300301391, 14.3767453860219057, 0.244096952193142480, 0.0230734326225932214]

and the computed decomposition is

—2.49999999703636711 + 145.769899153890435 / —9.9999999913514852 + 517.106150711515852 i

. 0.0999940670173818935 + 21.3628392917863437 i —0.500045063743692286 + 79.1681566575291527 i
"= 0.100028305341504586 + 21.3628527756206275 i 1.50002358381760881 + 32.6725933609709571 i
—0.499926454593063452 + 0.0000142466247443506387 i 1.00008814016387371 + 3.14161379568963772 i

—9.19999999613861696 — 0.00000000772422142913953280 i
0.899999936743709261 — 0.00000156202814849404348 i
1.04615643213670850 + 0.339923495269889020 i

1.37533468654902213 + 0.999231697828891208 i
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Decomposition algorithms

Sparse interpolation

fx) =Yiqwix® = o=3 f(¢) YY_T = Y1 wiegei(y) J

Example: f(x1,x2) = x133x212 —5x1x5° + 101.

i
Compute 0, = (], 93?%) for a1 +ar < 3 and g1 = pr = e50.
Compute the Hankel matrix H2:
98.46280 + 4.88062 i 97.42748 + 1.82098 i

97.42748 + 1.82098i  102.35770 + 3.77300i  99.50853 + 5.29465i ¢
95.73130 — .33862i 99.50853 + 5.29465 i 95.42134 + 1.47250i ¢

Deduce the decomposition of o = 32| wieg;:

97.01771 + 3.93695i  98.46280 + 4.88062i

97.00000 97.01771 + 3.93695i  95.50360 — 1.47099i
95.50360 — 1.47099i  97.42748 4 1.82098i

0.99211 + 0.12533i 0.80902 — 0.58779i —5.00000 — 4.43772¢ i
== | 1.00000 + 4.86234e—1i  1.00000 — 6.91726e % | w = | 101.00000 + 4.65640e i
—0.53583 — 0.84433i 0.06279 + 0.99803i 1.00000 — 1.92279e8i

and the exponents % mod 50 of the terms of f:

0.386933¢ 2 + 0.137963e 8

—0.550458¢ —8 — 0.38761e i
—17.00000 — 0.100085¢ i

{ 1.00000 — 0.414119e " i
12.00000 + 0.700984e %

—5.00000 + 0.270858e 0 i, ]
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Decomposition algorithms

Symmetric tensor decomposition

(Xo—Xl+3X2)4+(X0+X1—|—X2)4—3 (X0+2X1+2X2)4

T =
= —xp* — 24 x03x1 — 8x03x — 60 x0%x12 — 168 xp2x1%0 — 12 X02 x>
—96 X()X13 — 240 X0X12X2 — 384 X()X1X22 + 16 X()X23 — 46 X14 — 200 X13X2
—228 x12x0% — 296 x1 303 + 34 3
™ = e_13)(y) +e)(y) — 3e2)(y) (by apolarity)
-1 -2 -6 -2 —14 -10
—2 -2 -—14 4 -32 -20
e -6 —14 —10 —32 -20 —24
T* 2 4 -3 34 -74 -38
—14 —32 —20 -74 —38 —50
—10 —20 —24 —38 —50 —46
For B={1,x,x},
-1 -2 -6 -6 —14 -—10 —2 -2 -1
HBB— | 2 2 _1a | HBMEB_| _14 32 20 |, HERE_| 2 4 -3
T T T
-6 —14 -—10 —10 -20 -—24 —14 —-32 -20
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Decomposition algorithms

The matrix of multiplication by x; in B = {1,x2,x1} is

0 —2 -2
BB*I BXB 1 3

My = (HZ7) ! o 3 3
5 3

3 2

Its eigenvalues are [—1,1, 2] and the eigenvectors:
0 -2 -1
U= %

FSTERRNNIN

1
2
1 1
2 2
that is the polynomials
U(x) = [lxz éxl —2+%X2+%X1 —1+%X2+%X1].
We deduce the weights and the frequencies:
1 1 -3
AlpEebY o1 1x1 3x2

1x3 1x1 —3x2

Weights: 1,1, —3; frequencies: (—1.3),(1,1),(2,2).

Decomposition: 7*(y) = e(—13)()/) + 3(1‘1)()/) -3 E(2.2)()’) + (Y)4

B. Mourrain From moments to sparse representations
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Decomposition algorithms

Phylogenetlc trees
Problem: study probability vectors for genes [A, C, G,

MMMMMMMMMM

. Example:
Ancestor : A
Euteiz | : L. ] 1 5 3
Mammﬁ; "R i Transitions : M* M< M
= - Species: S1 S S3

For i1, ia, i3 € {A, C, G, T}, the probability to observe i1, ip, i3 is

4 4
1 2 3 § .
Piyip iz = Z e Mic iy M i, M i, = p = Z Tk Uk & Vi & W
k=1 k=1

where Uy = (Mll,l’ e, Mi74),vk = (Mf’l, ey M,%A),Wk = (Ml?,h ey MI%A)'

w5 pis a tensor € K* @ K* ® K* of rank < 4.
= |ts decomposition yields the M’ and the ancestor probabibility (7;).

B. Mourrain From moments to sparse representations
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Decomposition algorithms

A general framework

> § the functional space, in which the “signal” lives.
» S1,...,5, 1 § = § commuting linear operators: S;0S5; = 5;05;.
» A:heF— Alh] € C a linear functional on §.

Generating series associated to h € §:

only) = Y. A[5*(h)] y—l Zoa—

a€eN? aeN?

» Eigenfunctions:
SJ(E) =§jE,j= 1,...,n=>o0¢ :weg(y).
> Generalized eigenfunctions:

Si(Ek) = §Ex + Z mj k Exr = o, = wi(y)ee(y)-
K <k
= If h — o} is injective = unique decomposition of f as a linear
combination of generalized eigenfunctions.
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Decomposition algorithms

Sum of polynomial-exponential functions

F = PolExp(x),

Sj h(x) = h(xi,...,Xj—1,X; + 0j, Xj11, . . ., Xn) shift of x; by J;,
A : h(x) — A[h] = h(0) the evaluation at 0.
Generating series of h: ap(y) = D> cnn (@101, ..., andn) A

al
Eigenfunctions: ef; generalized eigenfunctions: w(x)ef;

h(x) = 1, gi(x)e"™ + r(x) with g(x) € C[x], f; € C" and r(§ ©® @) = 0,
Ya € N7, iff

on(y) = Z wi(y)eg (y)
i=1

with & = efi € V(ker Hs,) CC" , wi(x) =", 8iawa for gi =", 8i,aX®.

v== Decomposition from the moments o, = h(101,...,@n0,).
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Decomposition algorithms

Sparse interpolation of PolylLog functions

F = PolyLog(x) = {3 (5)ea s log®(x)x?, A finite},
Sjih(xt,....xn) = h(...,xj—1, \jXj, Xj31, . ..) for A\j € C— {1},
A h(xi,...,xp) — A[h] = h(1,...,1).

Generating series of h: ap(y) =D enn H(ATY, .., AQ7 )%
Eigenfunctions: x7; generalized eigenfunctions: log” x)x7.

h= Z,’lzl > peB; Wil log®(x) X7 iff the generating series o, is of the form

Uh(y Z w’ egl (y

with & = (A{",..., A7) € C" and wi(y) = Y 4c, wipy”® € Clyl.

v Decomposition from the moments o, = h(A?, ..., A%").
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Decomposition algorithms

Sparse reconstruction from Fourier coefficients

F = 1%(Q); ‘ ‘

Si: h(x) € L2(Q) — e h(x) € L?(R) is the multiplication by e

A: h(x) € O — [ h(x)dx € C.
The moments of f are

1 / —omiyn M4
0y =—=7—— [ f(x)e =T dx
I T

Eigenfunctions: d¢; generalized eigenfunctions: 5§a).
For f € L2(Q2) and o = (04 )4ezn its Fourier coefficients,

Mo (ps)penn € LA(Z") = | Y oarpns e L2(z").

B a€Z"

[, is of finite rank r if and only if f = Z,r/zl Y acACN? w;,aégl) with
&= (f,-’l, .. ,f,",,) € Q, Wi € Cand r = Z;:l H(ZaeA; w,-,aya)

lourrain
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Decomposition algorithms

Other applications
Decomposition of measures as sums of spikes from moments (images,
spectroscopy, radar, astronomy, .. .)
Decomposition of convolution operators of finite rank
Vanishing ideal of points: 0 = >"7_; eg(y)
Change of ordering for Grobner bases or change of bases for
zero-dimensional ideals: o, = (u, N(x%)),
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Low rank classification

@ Low rank classification

B. Mourrain From moments to sparse representations 20 /39



Low rank classification

Low rank decomposition of Hankel matrices

Rank 1 Hankel matrices: He = [£Q+IB]O¢6A,,3€B for some £ € K" or P".

Rank r Hankel matrices are not necessarily the sum of r rank one Hankel
matrices.

01 0 1 &4 &7 1 & &
100 |#Mn & & g l+n|le & &8
00 0 g & & &8 &
but
01 0 1 1 € 27 1 1 —€ €2
1 0 0| =Im 5 e € € 5. — & =6
00 0 €— € 62 63 4_ € 62 _63 e4

Symbol: y = lim._ i(eﬁy —e V).
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Low rank classification

Structured Low rank Decomposition

Decomposition in sum of Hankel operators associated to symbols
w(y)ee(y) with w(y) € Kly],§ € C".

= g = Z;:l wi e{,(Y) =
H?’B = VA(§17 e aér) A(wla cee 7wr) VB(él’ ce ’gr)t
Hé&lg = VA(§17 s a{r) A(wlg(€1)7 s ,Wrg(é.r)) VB(gl’ T ’ér)t
where VA(§17 e 7€r) = [g_]qi]lﬁiSM‘ylﬁjgf’ A( a ) diagonal matrix.
=g = Z,le wi(y) eg,-(y) =
HAYE = War(€) AT Wer ()"
Heis = War(€) DG, War (€)'

gHw

where Wx.r(§) Wronskian, Ag*w block diagonal.
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Low rank classification

Symmetric tensors of low rank (joint work with A. Oneto)
For 1) € Sy of degree d, with a decomposition ¥ = >/, (&;,%)9 and for
0<k<d-—k,
d—k,k — —
Hy " = Va_i(Z) Vk(3)
where = = (&1,...,&) € (K™1)", Vi(Z) is the Vandermonde matrix of =

at the monomials of deg. k.
Notation

Y = ker Hj ¥
h(k) = dim S /¢t = rankHj. "
/(=) defining ideal of the points =

Apolarity lemma

= is apolar to ¢ (i.e. appears in a decomposition of ) iff /(=) C 1y for
any k € N.

Proof. ¥* € (eg),...,e¢,) C S
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Low rank classification

The regularity of = is p(Z) = min{k € N| Juy, ..., u, € S s.t. ui(§) = dij}-

Regularity lemma

Let ¢ € Sy and let = be a minimal set of points apolar to . Then,
I(Z)k =vpr for 0< k <d—p(=).

Proof. - = ker H. " = V4_i(Z) VE(2), I(Z)x = ker VE(Z) and
Vy—k(=Z) injective for d— k> p(=).
Theorem

Let 1) € Sy and let = be a minimal set of points apolar to 1. If
d >2p(Z)+1, then

I(Z) = (wép(f)+1)‘

Moreover, = is the unique minimal set of points apolar to 1.
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Low rank classification

A set of essential variables of v is a minimal set of linear
forms (1,...,4y € S, such that ¢ € C[ly,...,0p].

Proposition

[Car06] the number of essential variables is hy(1);

[CC017] any minimal decomposition of 1 involves only linear forms
in the essential variables.

The Waring locus of 1 is the locus of linear forms that can appear in a
minimal decomposition of 1, i.e.,

Wy = {[é] € P(S1) | 3o, ..., 0, r=rank(y), s.t. o € <£d,£g,...,e;’>};
The complement is forbidden locus denoted Fy, := P" \ W,,.
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Low rank classification

Tensor with 2 essential variables (Sylvester method)

Let 1(x0,x1) € Sg = Klxo, x1]q-
The Hilbert function of A+ is of the form:

with (1) = (Gy, G,) of degree 0 < dy < do < d with dj +do = d + 2.

If G1 has simple roots, then v is of rank d; = deg(G;) and the roots
of G; are the unique minimal set apolar to .

Otherwise, 1 is of rank do = deg(Gy) and W, is dense in PL. For a
generic choice of A € S4,_g,, the roots of AG; + G are a minimal set
apolar to .
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Low rank classification

Cases of rank 4

/B

. .
.
(a) (b)  Coplanar, (c) General (d) General
Collinear with 3 collinear. coplanar. points.
B. Mourrain From moments to sparse representations
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Low rank classification

For i) € 54 of rank 4.

) has two essential variables (h,(1) = 2):
’L/}J‘ = (Ll7 ey Ln—l; Gl, G2), where deg(G,) = d,‘ and
d1 < dy. In particular, it has to be d > 4 and:
if d =4,5,6, then d» = 4, and minimal apolar sets
of points are defined by ideals
(=) =(L1,...,Lh,—1,HG1 + aGyp), for a general
choice of H € Tg_4 and a € C;
if d > 7, then d; = 4 and the unique minimal
apolar set of points is given by

I(Z) = (Ly,..., Ly1, G1).
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Low rank classification

¢ has three essential variables (h,(1) = 3) and a
minimal apolar set = of type (b):
if d =3, then V(I/Jé‘) =P+ D, where P is a
reduced point and D is connected scheme of
length 2 whose linear span is a line Lp;
Any minimal apolar set is of the type P U =’, with
='c Lp;
if d = 4, then hy(2) =4, V(13) = PU L, where P
is a reduced point and L is a line not passing
through P;
Any minimal apolar set is of the type P U =/,
where =/ C L.
if d > 5, then hy(2) =4, V(13) = PU L, where P
is a reduced point and L is a line not passing
through P and (i3) defines the unique minimal
apolar set.
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Low rank classification

¢ has three essential variables (h,(1) = 3) and a
minimal apolar set = of type (c):
if d =3, then V(¢)3°) = 0 and W, is dense in the
plane of essential variables;

if d > 4, there is a unique minimal apolar set of
points given by /(Z) = (15).

1 has four essential variables:

E there is a unique minimal apolar set of points given by
1(2) = (¢2)-
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Low rank classification

Classification/algorithm for rank <5

'HILBERT EXTRA

ALGORITHM TO FIND A MINIMAL APOLAR SET
SEQUENCE CONDITION

and (f{") defines the point apolar to f
@ [1,2%21] f has two essential variables and Sylvester algorithm is applied:
) if £, defines a set of L(f) reduced points, then rk(f) = (f);
(i) otherwise, tk(f) = d +2—1(f) and a minimal apolar set
is given by the principal ideal generated by
a generic form g € £},

Uz » 1k(f)=4and P is a point of any minimal apolar set; then, we find
DP :ﬂ::fj;"’;:‘;ﬂ the scalar c such that f' = f — c€3 has two essential variables
and we apply Sylvester algorithm to f" as in (2)

and, for a generic P and a gen
f'=f +c is a ternary cubic of rank 4 and we apply (4) to f'

P'is a point of any minimal apolar set; then, we find
the scalar c such that f' = f —ct$ has two essential variables
and we apply Sylvester algorithm to f' as in (2)

)

(7 [1,3,%3,1]

® [13,4.31]
O 135310 " “let P'be a generic point on C and c be a scalar such that
f'=f —ct} has hy(2) = 4.
@ if Z((f')F) = {Py,..., Ps} is @ set of 4 reduced points, then,
1k(f) =5, and a minimal set apolar to f is {BPy,...,Ps};
(if) otherwise, k(f) > 5
T(10) [13,5,3,1]  ZU)=LiUL,  let P, be ageneric point on L, for i = 1,2, respectively, and
Lyare distinct lines G; be a scalar such that f; = f — £}, has hy (2) =4, fori=1,2.
@ if Z((f;*)2) = {Py, .., Py}, for either i =1 or i =2, then,
1k(f) =5, and a minimal apolar set of f is {BP,,..., Py}
(i) otherwise, k(f) > 5

(12) (1,441 P is a point of any minimal apolar set; then, we find
Pisareduced point  the scalar ¢ such that f' = f — £ has three essential variables
Hisaplane, P¢H  andweapply(3)or ()to f

(a3), 411
12y [1,5,55,1]

5 and the unique minimal apolar set is Z(f;")
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Low rank classification

High rank and small forbidden locus

Definition: generic rank = rank of tensors on a dense open subset of
the set of tensors.

Theorem (Alexander, Hirschovitz, 1995)

The generic rank of a tensor in K[xg, ..., Xn|d is [ﬁ ("Jgd)], except for
d=2and (n,d) € {(2,4),(3,4),(4,3),(4,4)}.

Theorem (Oneto,-, 2018)

Let g be the generic rank of tensors of degree d in P". Let ¢ € Sy with
r =rank(v). If r > g, then Wy, is dense in P".
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The variety of missing moments

@ The variety of missing moments
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The variety of missing moments

Flat extension of a truncated moment matrix
For (monomial) sets BC C, B c C', B=C\ B, B = C'\ B

HEE = ((o | x+9)

acC,BeC’ [
when ) )
rank H((,:'C = rank HBB

For B C K[x], let Bt = BUx B -x,B, 9B = B* \ B.
Theorem
Assume HE'B' invertible with |B| = |B'| = r and C > B+, (' > B'*
connected tol (me C = m=1orm=x;m" withm' € C).

HC <" is a flat extension of Hf’B/
The operators M; := = HEE (HEZB)=1 commute.

316 € Poléxp s.t. rankHs = r and G|c.c; = 0.
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The variety of missing moments

Example

o =

moment series € K[[z1, z]], truncated in degree 4.

8
—4
17
—16
Bt.Bt, _ 14
o 1= 15
—52
34
—6
47

IH

where B = {1, x1, X0, X2, X1 X2, X3 }.

B. Mourrain

—4
—16
14
—52
34
—6
—160
86
—18
38

17
14
15
34
—6
47
86
—18
38
51

14
34
—6
86
—18
38

15
—6
47
—18
38
51

—52
—160
86

From moments to sparse representations

34
86

8+ 172 — 4z + 1523 + 142120 — 1627 + 472 — 62125
14347220 — 522} 45125 +38225 — 182723 + 86272 — 160z
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The variety of missing moments

+ B+
HE"B

Flat extension condition: rank < 6 implies

—814592 h? — 1351680 hyhy — 476864 hy hy — 599040 h3 — 301440 hyhs — 35072 h3
—520802032 h; — 396821760 hy — 164520152 h3 + 1693440 h; — 86394672128 = 0

—814592 h3 — 1351680 hyhy — 476864 hyhy — 599040 h3 — 301440 h3hy — 35072 hZ
4335275302 hy + 257276160 h3 + 96277632 hy + 1693440 hg — 34904464128 = 0

—814502 hy hy — 675840 hy hy — 238432 hy hs — 675840 hyhs — 599040 hyhy — 150720 hyhs — 238432 h3
—150720 h3hg — 35072 h3hs + 6613440 hy + 6641280 hy — 264559616 hy — 198410880 hy — 82264576 hs
41693440 hg + 1312368000 = 0

—814502 hy hy — 675840 hy hs — 238432 hy hg — 675840 hyh, — 599040 hy hs — 150720 hyhg — 238432 h3hy
—150720 h3hs — 35072 h3hg + 106430368 h; + 81349440 hy + 25713728 hy — 260446016 hy
—198410880 hs — 82264576 hg + 1693440 h1 + 34550702464 = 0

Solution set: an algebraic variety of dimension 3 and degree 52.

A solution (among others) is n, = —484, h, = 226, hy = —54, hy = 82, hs = —6, hg = 167,
hy = —1456, hg = 614, hg = —162, hig = 182, hy; = —18, hyp = 134, hi3 = 195.
Decomposition of rank 6 of the series with these computed moments:

o = (0.517+0.044i)e_0.830+1.593 i,—0.326—0.050 ; + (0.517 — 0.044 i) e _0.830—1.593 i, —0.326+0.050 i
+2.958 e1.142,0.836 + 4.583 €0.956, —0.713
—(4.288 + 1.119 /) e_.838+0.130 /,0.060+0.736 i — (4.288 — 1.1197) e_0.833—0.130/,0.060—0.736 i
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General decomposition algorithm [BCMT10], [BS18]
Perform a generic change of coordinates ¢'(x) = (T X).

For r = max ranka;’d_k,. ..
For bases B, B’ of size r, connected to 1 (e.g. B stable by
division/Borel fixed stable by division);
@ Find the (unknown) moments of H,'\BH’B+ s.t.
. H,’\BI’B invertible and
- the operators M; = H¥® #(HF #)~! commute.
@ Deduce the decomposition of o (Algorithm 1).
(3 If the roots are simple and the decomposition is valid for the moments
of v, stop and output a decomposition of ;
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Challenges, open questions
Numerical stability, correction of errors,
Efficient construction of basis, complexity,
Super-resolution, collision of points,
Super-extrapolation,
Best low rank approximation,

Thanks for your attention
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