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Paths

A path is a piecewise differentiable map X : [0, 1]→ Rd .

Coordinate functions: X1,X2, . . . ,Xd : R→ R

Their differentials
dXi (t) = X ′i (t)dt

are the coordinates of the vector

dX =
(
dX1,dX2, . . . ,dXd

)
.

Fundamental Theorem of Calculus:
∫ 1

0
dXi (t) = Xi (1)− Xi (0)

The first signature of the path X is

σ(1)(X ) =

∫ 1

0
dX (t) = X (1)− X (0) ∈ Rd .



Signature Matrices
Fix a path X : [0, 1]→ Rd with X (0) = 0.

Its second signature S = σ(2)(X ) is the d × d matrix with entries

σij =

∫ 1

0

∫ t

0
dXi (s)dXj(t).

By the Fundamental Theorem of Calculus,

σij =

∫ 1

0
Xi (t)X ′j (t)dt.

The symmetric matrix S + ST has rank one. Its entries are

σij + σji = Xi (1) · Xj(1).

In matrix notation,

S + ST = X (1)TX (1).

The skew-symmetric matrix S − ST measures deviation from linearity:

σij − σji =

∫ 1

0

(
Xi (t)X ′j (t)− Xj(t)X ′i (t)

)
dt



Lévy Area
The entry σij − σji of the skew-symmetric matrix S − ST

is the area below the line minus the area above the line:

Figure 5: Example of signed Lévy area of a curve. Areas above and under the chord

connecting two endpoints are negative and positive respectively.

1.3 Important properties of signature

We now review several fundamental properties of the signature of paths. We do not provide

all the details behind the proofs of these properties, but we emphasize that they are all

straightforward consequences of classical integration theory. Several deeper results are

discussed in the following Section 1.4, but only on an informal level.

1.3.1 Invariance under time reparametrisations

We call a surjective, continuous, non-decreasing function  : [a, b] 7! [a, b] a reparametriza-

tion. For simplicity, we shall only consider smooth reparametrizations, although, just like

in the definition of the path integral, this is not strictly necessary.

Let X, Y : [a, b] 7! R be two real-valued paths and  : [a, b] 7! [a, b] a reparametrization.

Define the paths eX, eY : [a, b] 7! R by eXt = X (t) and eYt = Y (t). Observe that

ėXt = Ẋ (t) ̇(t), (1.36)

from which it follows that

Z b

a

eYtd eXt =

Z b

a
Y (t)Ẋ (t) ̇(t)dt =

Z b

a
YudXu, (1.37)

where the last equality follows by making the substitution u =  (t). This shows that path

integrals are invariant under a time reparametrization of both paths.
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Signature Tensors

The kth signature of X is a tensor σ(k)(X ) of order k and format
d×d× · · ·×d . Its dk entries σi1i2···ik are the iterated integrals

σi1i2···ik =

∫ 1

0

∫ tk

0

· · ·
∫ t3

0

∫ t2

0

dXi1 (t1)dXi2 (t2) · · · dXik−1
(tk−1)dXik (tk).

The tensor equals

σ(k)(X ) =

∫

∆
dX (t1)⊗ dX (t2)⊗ · · · ⊗ dX (tk),

where the integral is over the simplex

∆ =
{

(t1, t2, . . . , tk) ∈ Rk : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ 1
}
.

We are interested in projective varieties in tensor space Pdk−1

that arise when X ranges over some nice families of paths.

Example: For linear paths X , we get the Veronese variety.



Planar Example

Consider quadratic paths in the plane R2:

X (t) = (x11t + x12t
2, x21t + x22t

2)T =

(
x11 x12

x21 x22

)
·
(
t
t2

)
.

The third signature σ(3)(X ) is a 2×2×2 tensor. Its entries are

σ111 = 1
6 (x11 + x12)3

σ112 = 1
6 (x11+x12)2(x21+x22) + 1

60 (5x11 + 4x12)(x11x22 − x21x12)

σ121 = 1
6 (x11+x12)2(x21+x22) + 1

60 (2x12)(x11x22 − x21x12)

σ211 = 1
6 (x11+x12)2(x21+x22) − 1

60 (5x11 + 6x12)(x11x22 − x21x12)

σ122 = 1
6 (x11+x12)(x21+x22)2 + 1

60 (5x21 + 6x22)(x11x22 − x21x12)

σ212 = 1
6 (x11+x12)(x21+x22)2 − 1

60 (2x22)(x11x22 − x21x12)

σ221 = 1
6 (x11+x12)(x21+x22)2 − 1

60 (5x21 + 4x22)(x11x22 − x21x12)

σ222 = 1
6 (x21 + x22)3

This defines a threefold of degree 6 in P7, cut out by 9 quadrics.
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My Favorite Tensors

Example (The Canonical Axis Path)

Let Caxis be the path from (0, 0, . . . , 0) to (1, 1, . . . , 1) given by d
linear steps in unit directions e1, e2, . . . , ed . The entry σi1i2···ik of
the signature tensor σ(k)(Caxis) is zero unless i1 ≤ i2 ≤ · · · ≤ ik .

In that case, it equals 1/k! times the number of distinct
permutations of the string i1i2 · · · ik . For example, if k = 4 then
σ1111 = 1

24 , σ1112 = 1
6 , σ1122 = 1

4 , σ1123 = 1
2 , σ1234 = 1 and σ1243 = 0.

Example (The Canonical Monomial Path)

Let Cmono be the monomial path t 7→ (t, t2, t3, . . . , td). It
travels from (0, 0, . . . , 0) to (1, 1, . . . , 1) along the rational
normal curve. Entries of the signature tensor σ(k)(Cmono) are

σi1i2···ik =
i1
i1
· i2
i1 + i2

· i3
i1 + i2 + i3

· · · ik
i1 + i2 + · · ·+ ik

.
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My Favorite Matrices
The signature matrices of the two canonical paths are

σ(2)(Caxis) =




1
2 1 1

0 1
2 1

0 0 1
2


 and σ(2)(Cmono) =




1
2

2
3

3
4

1
3

2
4

3
5

1
4

2
5

3
6


 .

The symmetric part of each matrix is the same constant rank 1 matrix:

σ(2)(C•) + σ(2)(C•)
T =




1 1 1
1 1 1
1 1 1


 .

We encode cubic paths and three-segment paths by 3× 3 matrices

X =



x11 x12 x13

x21 x22 x23

x31 x32 x33


 .

The map X 7→ σ(2)(X ) from paths to signature matrices

is given by the congruence action X 7→ X · σ(2)(C•) · XT.



The Skyline Path
is the following axis path with 13 steps in R2:

X =

[
1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 −1 0 2 0 −2 0 1 0 −1 0

]

Its 2×2×2 signature tensor can be gotten from the core tensor Caxis of

size 13×13×13 by multiplying with the 2×13 matrix X on all three sides:

Sskyline = [[Caxis;X ,X ,X ]] =
1

6

[
343 0 −84 18
84 18 −36 0

]
.

Three-step path and cubic path with the same signature tensor:



Shortest Path

... for a given signature tensor

σ(3)(X ) =

[
343 0 −84 18
84 18 −36 0

]
.

[M. Pfeffer, A. Seigal, B.St: Learning Paths from Signature Tensors ]



Klee-Minty Path
X =




1 0 −1 0 1 0 −1
0 1 0 0 0 −1 0
0 0 0 1 0 0 0


 .

σ(3)(X ) =
1

6




0 0 0 0 0 0 0 6 0
0 0 0 0 0 −6 −6 3 3
0 6 0 −6 3 −3 0 0 1






Shortest Path



Pop Quiz

Fix d = 2 and consider the parametrization of the unit circle

X : [0, 1] → R2 , t 7→
(
sin(2πt), cos(2πt)

)
.

I Compute the signature vector σ(1)(X ).

I Compute the signature matrix σ(2)(X ).

Yes, you can do this !!!

More seriously,

I Compute the signature tensor σ(3)(X ).

Answer: σ(3)(X ) = −π(e122 − 2e212 + e221).

Inverse Problem:
To what extent is a path determined by its signature tensors?
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Signature Matrices

Theorem
Let k = 2 and m ≤ d. Our two favorite m ×m matrices
σ(2)(Caxis) and σ(2)(Cmono) (padded by zeros) lie in the same
orbit for the action of GLd(R) by congruence on d × d matrices.

The orbit closure is the signature variety Md,m in Pd2−1.

Any d × d matrix S = σ(2)(X ) is uniquely the sum
of a symmetric matrix and a skew-symmetric matrix:

S = P +Q, where P =
1

2
(S +ST ) and Q =

1

2
(S−ST ).

The
(d+1

2

)
entries pij of P and

(d
2

)
entries qij of Q

serve as coordinates on the space Pd2−1 of matrices S = (σij).
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Determinantal Varieties

Theorem
For each d and m, the following subvarieties of Pd2−1 coincide:

1. Signature matrices of piecewise linear paths with m segments.

2. Signature matrices of polynomial paths of degree m.

3. Matrices P+Q, with P symmetric, Q skew-symmetric, such that

rank(P) ≤ 1 and rank
(
[P Q ]

)
≤ m.

For each fixed d, these varieties Md ,m form a nested family:

Md ,1 ⊂Md ,2 ⊂Md ,3 ⊂ · · · ⊂ Md ,d =Md ,d+1 = · · ·

Fix m ≤ d. Then Md ,m is irreducible of dimension md −
(m

2

)
− 1

and has singular locus Md ,m−1. For m odd, its ideal is generated
by the 2-minors of P and (m + 1)-pfaffians of Q. For m even, take
the 2-minors of P, (m + 2)-pfaffians of Q, and entries in P ·Cm(Q)
where Cm(Q) is the circuit matrix formed by the m-pfaffians.
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Example: Quadratic Paths in 3-Space
The variety M3,2 has dimension 4 and degree 6 in P8. It is the
Zariski closure of the common GL(3)-orbit of the two matrices

σ(2)(Caxis) =




1
2 1 0

0 1
2 0

0 0 0


 or σ(2)(Cmono) =




1
2

2
3 0

1
3

2
4 0

0 0 0


 .

It is cut out by the 2-minors of P = (pij) and the 3-minors of

[
P Q

]
=



p11 p12 p13 0 q12 q13

p12 p22 p23 −q12 0 q23

p13 p23 p33 −q13 −q23 0


 .

These do not generate the prime ideal of M3,2.

We also need the entries of P · C2(Q) where C2(Q) =
[
q23,−q13, q12

]T
.

The universal variety U3,2 = M3,3 ⊂ P8 is
a cone over the Veronese surface P2 ↪→ P5.



Universal Varieties
The kth signature tensor of a path X in Rd is a point σ(k)(X ) in

the tensor space (Rd)⊗k , and hence in the projective space Pdk−1.

Consider the set of signature tensors σ(k)(X ), as X ranges over

all paths [0, 1]→ Rd . This is the universal variety Ud ,k ⊂ Pdk−1.

d \ k 2 3 4 5 6 7 8 9
2 2 4 7 13 22 40 70 126
3 5 13 31 79 195 507 1317 3501
4 9 29 89 293 963 3303 11463 40583
5 14 54 204 828 3408 14568 63318 280318

Table: The dimension of Ud,k is much smaller than dk − 1.

Theorem
The dimension of the universal variety Ud ,k is the number of
Lyndon words of length ≤ k over the alphabet {1, 2, . . . , d}.
A word is a Lyndon word if it is strictly smaller

in lexicographic order than all of its rotations.
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Tensors
The truncated tensor algebra is a non-commutative algebra:

T n(Rd) =
n⊕

k=0

(Rd)⊗k

Standard basis given by words of length ≤ n on {1, 2, . . . , d}:
ei1i2···ik := ei1⊗ei2⊗· · ·⊗eik for 1 ≤ i1, . . . , ik ≤ d and 0 ≤ k ≤ n.

The tensor algebra is also a Lie algebra via

[P,Q] = P ⊗ Q − Q ⊗ P for P,Q ∈ T n(Rd).

T n(Rd) is a commutative algebra with respect to the shuffle
product tt. The shuffle product of two words of lengths r and s
is the sum over all

(r+s
s

)
ways of interleaving the two words:

e12 tte34 = e12tt 34 = e1234 + e1324 + e1342 + e3124 + e3142 + e3412

e3tt134 = e3134 + 2e1334 + e1343 e21tt 21 = 2e2121 + 4e2211
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Free Lie Algebra
Lien(Rd) is the smallest Lie subalgebra of T n(Rd) containing Rd .
This is a linear subspace of T n

0 (Rd) = {0} ⊕ Rd ⊕ · · · ⊕ (Rd)⊗n.

Lemma
This is characterized by the vanishing of all shuffle linear forms:

Lien(Rd) =
{
P ∈ T n

0 (Rd) : σI tt J(P) = 0 for all words I , J
}
.

Theorem
Basis for Lien(Rd) is given by Lie bracketings of all Lyndon words.

[C. Reutenauer: Free Lie Algebras, Oxford University Press, 1993]

Example. Lie4(R2) is 8-dimensional in T 4
0 (R2) ' R30. The eight

Lyndon words 1, 2, 12, 112, 122, 1112, 1122, 1222 determine a basis:

e1, e2, [e1, e2] = e12−e21, . . . , [[[e1, e2], e2], e2] = e1222−3e2122+3e2212−e2221

The 22-dim’l space of linear relations is spanned by shuffles

σ21tt 21 = 2σ2121 + 4σ2211 , σ1tt 111 = 4σ1111,
σ12tt 21 = 2σ1221 + σ1212 + σ2121 + 2σ2112.
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Free Lie Group
The following are polynomial maps on T n

0 (Rd):

exp(P) =
∑

r≥0

1

r !
P⊗r and log(1 + P) =

∑

r≥1

(−1)r−1

r
P⊗r .

The logarithm inverts the exponential function:

log(exp(P)) = P for all P ∈ T n
0 (Rd).

The step-n free Lie group is the image of the free Lie algebra:

Gn(Rd) := exp(Lien(Rd)).

Theorem
This Lie group is an algebraic variety in T n

1 (Rd). Its is defined by

σI tt J(P) = σI (P)σJ(P) for all words I , J with |I |+ |J| ≤ n.

Our contribution: This is the prime ideal. We have a nice Gröbner basis.



Example
The Lie algebra Lie3(R2) has dimension 5:

σ = re1+se2+t[e1, e2]+u[e1, [e1, e2]]+v [[e1, e2], e2], r , s, t, v , u ∈ R.

The exponential map from Lie3(R2) into T 3
1 (R2) ' R14 is

exp(σ) = 1 + re1 + se2 +
r2

2
e11 +

( rs
2

+ t
)
e12 +

( rs
2
− t
)
e21 + · · ·

· · · +
( rs2

6
− 2v

)
e212 +

( rs2

6
− st

2
+ v
)
e221 +

s3

6
e222.

Its image is the 5-dimensional Lie group G2,3, defined by

〈
σ2

1 − 2σ11 , σ1σ2 − σ12 − σ21 , σ1σ2 − σ12 − σ21 , σ
2
2 − 2σ22,

σ1σ11 − 3σ111, σ1σ12 − 2σ112 − σ121 , σ1σ21 − σ121 − 2σ211,
σ1σ22 − σ122 − σ212 − σ221 , σ2σ11 − σ121 − σ211 − σ112,

σ2σ12 − 2σ122 − σ212 , σ2σ21 − 2σ221 − σ212 , σ2σ22 − 3σ222

〉

What does this have to do with paths? What if we eliminate σi and σij ?



Back to Paths

The connection to paths comes from the following key result.
This is attributed to Chow (1940) and Chen (1957).

Theorem (Chen-Chow)

The step-n free nilpotent Lie group Gn(Rd) is precisely the
image of the step n signature map applied to all paths in Rd :

Gn(Rd) =
{
σ≤n(X ) : X : [0, 1]→ Rd any smooth path

}

Let X be the piecewise linear path with steps X1,X2, . . . ,Xm

in Rd . Chen (1954) showed that the n-step signature of the
path X is given by the tensor product of tensor exponentials:

σ≤n(X ) = exp(X1) ⊗ exp(X2) ⊗ · · · ⊗ exp(Xm) ∈ T n(Rd).



The Universal Variety

We focus on signature tensors σ(k)(X ) of a fixed order k.
Consider the projection of the free Lie group Gd ,k into (Rd)⊗k .

The image is an affine cone. The corresponding projective variety
in Pdk−1 is denoted Ud ,k and is called the universal variety.

Corollary

The universal variety Ud ,k is the projective variety given
by the kth signature tensors σ(k)(X ) of all paths X in Rd .

Example (k = 2)

The universal variety Ud ,2 of signature matrices consists
of all d×d matrices whose symmetric part has rank 1.

Example (d = 2, k = 3)

The universal variety U2,3 for 2×2×2 tensors has dimension 4 and
degree 4 in P7. Its singular locus is a line. Equations? Geometry?



Census

With Améndola and Friz, we conjectured that the prime ideal
of the universal variety Ud ,k is always generated by quadrics:

d k amb dim deg gens

2 3 7 4 4 6

2 4 15 7 12 33

2 5 31 13 40 150

3 3 26 13 24 81

3 4 80 31 672 954

4 3 63 29 200 486

Table: The prime ideals of the universal varieties Ud,k

Francesco Galuppi found a change of coordinates for k ≤ 3
which turns Ud ,k into a projective toric variety. Using these
coordinates, he was able to disprove our conjecture.
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Exercises

I Start with the ideal of the Lie group G2,3:

〈
σ2

1 − 2σ11 , σ1σ2 − σ12 − σ21 , σ1σ2 − σ12 − σ21 , σ
2
2 − 2σ22,

σ1σ11 − 3σ111, σ1σ12 − 2σ112 − σ121 , σ1σ21 − σ121 − 2σ211,
σ1σ22 − σ122 − σ212 − σ221 , σ2σ11 − σ121 − σ211 − σ112 ,

σ2σ12 − 2σ122 − σ212 , σ2σ21 − 2σ221 − σ212 , σ2σ22 − 3σ222

〉

Eliminate the six unknowns σ1, σ2, σ11, σ12, σ21, σ22 to get the
ideal of the universal variety U2,3 ⊂ P7. What is this variety?

I The Lie group G3,3 is an affine variety in T 3
1 (R3) ' R39. Find

a Gröbner basis for its ideal. What is the dimension of G3,3?

I Compute the ideal of the universal variety U3,3 in P26. What
is its dimension, degree, singularities, Hilbert polynomial, ....?

I List explicit tensors in U3,3. Find corresponding paths in R3.


