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Polynomial Signature Varieties

Consider paths X : [0,1] — R? whose coordinates are polynomials
of degree < m. We identify paths with d x m-matrices X = (x;):

Xi(t) = Xi1t+xi2t2+xi3t3+"'+X;mtm.

The kth signature o(9)(X) isa dxdx ---xd tensor. It can be
computed by multiplying our favorite mxmx - -+ xm tensor

k — |h.,__ ., __ i3 i
7" (Cnono) = [il iti Wttt i1+i2+~~+ik}

on all k sides with the d x m matrix X.
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of degree < m. We identify paths with d x m-matrices X = (x;):

Xi(t) = Xi1t+xi2t2+xi3t3+"'+X;mtm.

The kth signature o(9)(X) isa dxdx ---xd tensor. It can be
computed by multiplying our favorite mxmx - -+ xm tensor

k — |h.,__ ., __ i3 i
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on all k sides with the d x m matrix X.

The polynomial signature variety Pq k.m is the
Zariski closure of the image of the rational map

oR) . pam=t _, pd X 6 (X),

Remark: If m < d then this is the closure of a GL(d) orbit in (C¢)®™.



Example: Quadratic Paths in 3-Space

The third signature variety P33 for quadratic paths in R3
lies in the universal variety U3 3 for 3x3x3 tensors.

P332 has dimension 5, degree 90, and is cut out by 162 quadrics in
P?>. Recall that U3 3 has dimension 13, degree 24, and 81 quadrics.



Example: Quadratic Paths in 3-Space

The third signature variety P33 for quadratic paths in R3
lies in the universal variety U3 3 for 3x3x3 tensors.

P332 has dimension 5, degree 90, and is cut out by 162 quadrics in
P?>. Recall that U3 3 has dimension 13, degree 24, and 81 quadrics.

The linear span of P33 is the hyperplane P?> defined by

0123 — 0132 — 0213 + 0231 + 0312 — 0321 = 0.

This linear form is the signed volume of the convex hull of a path.



Piecewise Linear Signature Varieties

Piecewise linear paths are also represented by d x m matrices X.

Their steps are the column vectors Xi, ..., X, € R?. The path is

ts X4+ X+ (mt—i+1)- X, for Sl<t< L
The kth signature o(9)(X) isa dxdx ---xd tensor. It can be

computed by multiplying the upper triangular mxmx ---xm
tensor o%(Cayis) on all k sides with the d x m matrix X.
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Piecewise linear paths are also represented by d x m matrices X.

Their steps are the column vectors Xi, ..., X, € R?. The path is
ts X4+ X+ (mt—i+1)- X, for ZL<t<

i
e

The kth signature o(9)(X) isa dxdx ---xd tensor. It can be
computed by multiplying the upper triangular mxmx ---xm
tensor o%(Cayis) on all k sides with the d x m matrix X.

The piecewise linear signature variety Lq k. m is the
Zariski closure of the image of the rational map

oK) pam=1 __, pd1 x5 (R (X).

Remark: If m < d then this is the closure of a GL(d) orbit in (C¢)®™.



Few Steps in 3-Space
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Parametrizations
By Chen (1954), the n-step signature of a piecewise linear path X
is given by the tensor product of tensor exponentials:

e=(X) = exp(X1) B exp(Xe) ® - @ exp(Xm) € T"(RY).



Parametrizations

By Chen (1954), the n-step signature of a piecewise linear path X
is given by the tensor product of tensor exponentials:

e=(X) = exp(X1) B exp(Xe) ® - @ exp(Xm) € T"(RY).

Corollary
The kth signature tensor of X equals

ZH,T [ X)) ® Xr(2) @ Xo(3) ® - ® Ko

Sum is over weakly increasing functions 7 :{1,..., k} — {1,..., m}.

Example (k = 3)
The third signature is the dxdxd tensor ¢(®(X) =

1 - 3 1 2 2
e X 45 D (XPeX + XeXT) + ) XeXo X
i=1 1<i<j<m 1<i<j<I<m



Inclusions

Theorem
For any d and any k, we have the following chains of inclusions
between the kth Veronese variety and the kth universal variety:

p— k_
(P =Lak1 C Lak2 C - C Lam-1C Loy = Ug C P71
— k_
k(P91 = Pak1 C Pak2 C -+ C Pasm—1 C Papm = U C PT

Here M and M’ are constants that depend only on d and k.

Remark

» Dimension count yields conjectured values for M, M.  more iater

» The number m is similar to tensor rank, where a chain
of secant varieties eventually fills the ambient space.



Similarities and Differences
Polynomial and piecewise linear signature varieties agree for matrices:

£d,2,m - Pd,Z,m-

These are dxd matrices P+@Q, where P is symmetric of rank <1,
and Q is skew-symmetric, such that rank([P Q]) < m.

Theorem
Two-segment paths and quadratic paths in R? have different

signature varieties Lo 2 # Pak2 in P21 for k > 3.



Similarities and Differences
Polynomial and piecewise linear signature varieties agree for matrices:

£d,2,m - Pd,Z,m-

These are dxd matrices P+@Q, where P is symmetric of rank <1,
and Q is skew-symmetric, such that rank([P Q]) < m.

Theorem

Two-segment paths and quadratic paths in R? have different
. .. . k
signature varieties L3 2 # Paka in P21 for k > 3.

Example (k = 4)
The threefolds P54 and L34 are orbit closures of GL(2) in P°.
We use invariant theory to distinguish these orbits.

The space of SL(2)-invariant linear forms on (R?)®* is spanned by

6y = 012120 — 01221 — 02112 + 02121
and 0l = 01120 — 01221 — 02112 + T2011.

Their ratio ¢1/¢; is a rational function on P15 that is constant on orbits.
It takes value 0 on C,ys and value 1/5 on Cyono-



Data

We computed the polynomial and piecewise linear

signature varieties for many tensor formats:

d| k| m amb | dim | deg gens

2 [3]2 7 3 6 9

2 [3[>3]7 4 4 6

2 (412 14 |3 24 55

21413 15 [5 1927 64~ (337,34%), (07,3%), ?
24 >4]15 |7 12 33

2 [5]2 25 |3 60 220

2513 31 |5 12667, 492¢ | (1607, 185%), ?
262 41 |3 120 670

2163 62 |5 4352719207 | (9457 ,1056%), ?
3[3]2 25 |5 90 162

3[3]3 26 |8 7567, 396~ (837,91%) , ?
34712 65 |5 600 1536

31413 80 |8 ? (12427 [1374%) , 7

Table: Invariants of the varieties Py k. m and Ly k,m




A Question of Lyons and Xu

Proposition

There is an axis path with m = 8 steps in alternating axis
directions in the plane R? and length | = 14 < 16 = 2k+1
whose first k = 3 signature tensors are all zero.

+1 +1

+1 +1

Answer to Question 2.5 in [T. Lyons and W. Xu: Hyperbolic development
and inversion of signature, J. Funct. Anal. 272 (2017) 2933-2955]



Axis Paths

For axis paths, each step X; is a multiple a; - e,, of a basis vector.

Record the step sequence v = (v1,v2,...,vm) € {1,2,...,d}™.

The kth signature tensors of such axis paths form a subvariety
A,k of L4k m. Itis parametrized by the lengths ai, a0, ..., am.

A current project by Laura Colmenajero and Mateusz Michalek
studies the signature varieties A, x. Stay tuned for their results.



Axis Paths

For axis paths, each step X; is a multiple a; - e,, of a basis vector.
Record the step sequence v = (v1,v2,...,vm) € {1,2,...,d}™.

The kth signature tensors of such axis paths form a subvariety
A,k of L4k m. Itis parametrized by the lengths ai, a0, ..., am.

A current project by Laura Colmenajero and Mateusz Michalek
studies the signature varieties A, x. Stay tuned for their results.

Example: For d =3 and v = (1,2, 3) we get signature matrices

af 2a1a> 2aia3
0 ag 2ara3
0 0 a3

Thus the signature variety A, » is a Veronese surface in P® C P8.

Exercise: Compute A, 4 C P ford =2,m<7,and v =(1,2,1,2,...).



|dentifiability

Counting parameters gives an upper bound on the dimension of
our signature varieties: Ad.k = # Lyndon words

dim(ﬁd’km) < min{/\d* —1,dm— 1},

and  dim(Pgim) < min{lgx—1,dm—1}.

If the dimension equals dm — 1 then the variety is algebraically
identifiable. This means that, for some r € N, the map from

dx m matrices X to signature tensors o(K)(X) is r-to-1. If r = 1
then the map is birational, and the variety is rationally identifiable.

Conjecture

» Both inequalities are equalities provided d, m > 2 and k > 3.

» Stabilization constants for filling the universal variety are

)\dk
_ A >
M= M = [ d‘"



Filling the Universal Variety

d\k[3 |4 [5 |6 7 8 9
2 3 |4 [7 |12 |21 |36 64
3 5 | 11|27 |66 | 170 |440 | 1168
4 8 |23 |74 |241 | 826 | 2866 | 10146
5 11 [ 41 | 166 | 682 | 2914 | 12664 | 56064
6 16 | 68 | 327 | 1616 | 8281 | 43246 | 229866

Table: The value M = M’ at which the signature varieties stabilize.

Example (d =3,k =4, M =11)
Consider 3 x 3 x 3 x 3 signature tensors for paths in R3. The
universal variety U3 4 has dimension 31 and degree 672 in 0.

The signature varieties P3 4,10 and £3 4,10 have dimension 30.
They are divisors in

P3a11 = L3a11 = Uza.



At the Borderline

Identifiability is delicate for Ay x = md, when the signature variety
exactly fills the universal variety. We expect algebraic identifiability.

Example (d =2,k = 4, M = 4)

The 7-dim'l variety P24 4 = Lo44 = Uo s has degree 12 in P15
Have two parametrizations from the P’ of 2x4 matrices. The map
from quartic paths is 48-to-1. From four-segment paths it is 4-to-1.

Consider the four-segment path in R? given by

N [29 15 13 2
T |23 26 6 27

Three other paths have the same 2 x 2 x 2 X 2 signature tensor:

36.74838  —17.80169  37.75532 2.29799
27.39596 —9.82926 40.23084  24.20246|’

102.16286 ~ —131.13298  85.92484 2.04528
104.55786 ~ —136.84738  86.56467  27.72484|°

38.53237  38.8057  —79.20533  60.86735
28.69523  82.7734  —147.7839  118.3152] °



Rational ldentifiability

We believe that low-complexity paths can be recovered from their
signature tensors whenever this is permitted by the dimensions.

Conjecture

Let k > 3 and take m strictly less than the threshold M at which
the universal variety is expected to be filled. Then both of the
signature varieties Py x m and Ly k. m are rationally identifiable.

Current best results:

Theorem

» Rational identifiability holds for m <7
> Algebraic identifiability holds for m < 30.
» Identifiability holds for L4 x m provided m < d.

This relies on reduction to 3-way tensors.



Reductions

Proposition
Fix integers d, k, m that satisfy d > m > 1 and k > 3.

(a) If Lm3 m is rationally (resp. algebraically) identifiable
then Lq k.m is as well.

(b) If Pm3,m is rationally (resp. algebraically) identifiable
then Py i,m is as well.

Proof.

For the reduction from k to 3 we note that o(¥)(X) determines
o) (X) up to a multiplicative constant, by using shuffle relations.

The reduction from (d, m) to (m, m) is based on tensor methods.
It relies on a variant of the Tucker decomposition (Kruskal's
Theorem).  The core tensors are 0¥(Cuono) and o¥(Caxis). [



Invitation to read...

Learning Paths from Signature Tensors

r, new paperrm_Tax Pfeffer and Anna Seigal
] HJ |
—I _I—l I—l é— J ¢ 1—1 —

Abstract: Matrix congruence extends naturally to the setting of tensors.
We apply methods from tensor decomposition, algebraic geometry and
numerical optimization to this group action. Given a tensor in the orbit
of another tensor, we compute a matrix which transforms one to the
other. Our primary application is an inverse problem from stochastic
analysis: the recovery of paths from their signature tensors of order three.
We establish identifiability results and recovery algorithms for piecewise
linear paths, polynomial paths, and generic dictionaries. A detailed
analysis of the relevant condition numbers is presented. We also compute
the shortest path with a given signature tensor.




Next summer in Bern

SIAM AG 19 Proposed Minisymposia

Algebraic methods in stochastic analysis
Organizers: Carlos Amendola and Anna Seigal

Signature tensors of paths
Organizers: Joscha Diehl and Francesco Galuppi
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