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Introduction

Main motivations:

I Classical projective geometry of loci of points.

I Connections between real algebraic geometry and tensor ranks.

I Suppose we have a description of the real rank boundary between
two real ranks. Informally, if the equation of this real rank boundary
almost vanishes on our tensor, it means that we are in the vicinity of
it. Close to the boundary, usually numerical methods approximating
rank are less accurate.



Ranks and X -ranks

Let K be a field (for us K = R or C), X ⊂ PN
K a projective variety not

contained in a hyperplane.

Definition
The X-rank of a point f ∈ PN

K , denoted rkX (f ), is the minimum integer s
such that f is in the span of s distinct points of X :

f ∈ 〈`1, . . . , `s〉, where `i ∈ X .

I X = νd(Pn) ⊂ PN (Veronese variety of degree d)  Waring rank of
homogeneous polynomials/forms (or symmetric rank of symmetric
tensors);

I X = Pn1 × · · · × Pnd (Segre variety)  tensor rank of tensors in
Kn1+1 ⊗ · · ·⊗Knd+1.



Typical ranks

Definition
Let PN

R be the real projective space equipped with the euclidean topology.
Let X ⊂ PN

R be a real projective variety. The sets
Rs = {f ∈ PN

R | rkX (f ) = s} are semi-algebraic. If Rs contains an open
euclidean ball, then s is a typical rank.

There might be several typical ranks (whereas over an algebraically closed
field we have a unique typical rank, called generic).

For instance, consider X = νd(P1), case of binary forms of degree d .

Theorem (Blekherman, after Comon-Ottaviani)
Typical Waring ranks of binary forms of degree d take all integer values
between d d+2

2 e and d.



More about typical ranks

Theorem (Blekherman-Teitler)
Let X ⊂ PN

R be a real projective variety. Let g be the complex generic
rank of its complexification. Then g is the smallest typical rank of X .

Theorem (Bernardi-Blekherman-Ottaviani)
Let X ⊂ PN

R be a real projective variety. Then any X-rank between the
lowest typical rank and the highest typical rank is also typical.

Problem
Classify typical ranks for special real algebraic varieties.



Ternary forms

For X = νd(P2), the case of ternary forms of degree d .

Theorem (Bernardi-Blekherman-Ottaviani)

I Ternary cubics (d = 3) have only one typical rank, which is 4.

I Ternary quartics (d = 4) have at least two typical ranks (6 and 7),
the maximum typical is 8 (open problem: is 8 realizable?)

I Ternary quintics (d = 5) have at least two typical ranks (7 and 8).

Theorem (Micha lek, Moon, Sturmfels, –)
Sextics (d = 6) have at least two typical ranks (10 and 11). Septics
(d = 7) have at least two typical ranks (12 and 13).



Real rank boundaries

s

s+1

Definition
Let X ⊂ PN

R be a real projective variety. Let g = complex generic rank of
its complexification in PN . Let

RX = {f ∈ PN
R | rkX (f ) = g}.

If X has more than one typical rank, ∂RX is non-empty and codimension
one. The real rank boundary of X = Zariski closure ∂algRX over C (a
hypersurface in PN).



Real rank boundaries for forms

For binary forms, a lot is known about the real rank boundary, along with
all the boundaries dividing higher typical ranks, by Lee-Sturmfels and
more recently by Brambilla-Staglianò.

For ternary forms, partially results are known for low degree forms. For
instance:

Theorem (Micha lek, Moon, Sturmfels, –)
The algebraic boundary for sextics is a hypersurface in the P27 of ternary
sextics. One of its irreducible components is the dual to the Severi
variety of rational sextics.

More:

Theorem (Micha lek, Moon, Sturmfels, –)
The algebraic boundary for quintics is an irreducible hypersurface of
degree 168 in the P20 of ternary quintics.



Yet another example: the hyperdeterminant of format
2× n × n

The next follows from theorems of Berqvist and De Silva–Lim.

Theorem
The real rank boundary between the only two typical ranks n and n + 1
of X = P1 × Pn−1 × Pn−1 is the hypersurface defined by the
hyperdeterminant.

In this case, one can show X∨ = τ(X ) + σn−2(X ): More generally, in
several instances we expect one component of the real rank boundary to
be a join of a tangential and a secant.



Carlini-Catalisano-Oneto forbidden loci

Definition
Let X be a projective variety in PN . The forbidden locus F(f ) of f ∈ PN

is the subset of points in X that do not appear in any set Z ⊂ X of
cardinality rkX (f ) such that f ∈ 〈Z 〉.

The blue and green points are in X , f is the red point, and rkX (f ) = 4.
For instance, the green point is not in the forbidden locus.



Ranestad-Schreyer loci

Definition
Let X be a projective variety in PN . The Ranestad-Schreyer locus
RS(f ), is the subset of points ` ∈ X with the following property: for
every ` ∈ RS(f ), there exists a zero-dimensional subscheme Z ⊂ X of
length rkX (f ) with f ∈ 〈Z 〉, that has ` as non-reduced point.

The three (infinitesimally) close blue points represent a double point in
the plane, because they are about to crash into one single point (the
support). This double point has non-reduced structure and hence its
support is in the Ranestad-Schreyer locus.



Example: Ternary cubics

The introduction of this locus was inspired by the following.

Theorem (Carlini-Catalisano-Oneto)
Let f be a general ternary cubic form. The forbidden locus F(f ) is
closed. The two irreducible components are the Cayleyan and the dual of
the Hessian of f .

This also appeared for determining an algebraic boundary sitting inside
the variety of sums of powers VSP(f ).

Proposition
RS(f ) = F(f ).



Catalecticants and antipolars

Question: How to compute some Ranestad-Schreyer loci?

Let X = ν2d(Pn), Veronese variety of degree 2d . It lives in the space of

forms of degree 2d in (n + 1) variables: P(2d+n
n )−1. Let

S = C[x0, x1, . . . , xn]. We are interested in forms in S2d .

By differentiation, f ∈ S2d induces a linear map: Cf : S∗d → Sd , called
middle catalecticant.

Definition
Assume that Cf is an isomorphism. The antipolar of f is:

Ω(f )(`) = det(Cf+`2d )− det(Cf ).

The form Ω(f ) is defined in the coefficients of `. Note: the forms Ω(f )
and f have the same degree.

(This comes from:

v tA−1u =
1

det(A)

[
det(A + uv t)− det(A)

]
)



Example

Let n = 2 and d = 2. Let

f = 7/2x4
0 +9/7x3

0 x1+1/2x2
0 x

2
1 +2x0x

3
1 +5/8x4

1 +3x3
0 x2+2x2

0 x1x2+x0x
2
1 x2+1/9x3

1 x2+

+2/9x2
0 x

2
2 +6/7x0x1x

2
2 +9/5x2

1 x
2
2 +5/9x0x

3
2 +7/3x1x

3
2 +10/7x4

2 ∈ C[x0, x1, x2]4 = S4.

Its middle catalecticant Cf : S∗
2 → S2 has rank 6 (full-rank). Let

` = ax + by + cz . Then (up to a constant)

Ω(f )(`) = det(Cf+`4)− det(Cf ) =

= 1557939415221a4−14648678086518a3b+165349467039743a2b2−296911950491100ab3+26305857192150b4−239845369655052a3c+

295737285544470a2bc − 850500178347330ab2c + 240936112061400b3c + 503631251967753a2c2 + 166673807209980abc2

−957370784953905b2c2 − 9962940180690ac3 + 710264007973800bc3 − 193910604676425c4,

so Ω(f )(`) ∈ C[a, b, c]4.



Ranestad-Schreyer loci from antipolar

Theorem (Micha lek-Moon, –)
Let d ∈ {1, 2, 3, 4} and f ∈ S2d be a general ternary form of degree 2d.
Then RS(f ) = {Ω(f )(`) = 0}.

This works more generally for toric varieties:

I X= projective toric variety.

I S = Cox(X ) (in toric case it is a polynomial ring attached to X ),
graded by an abelian group called Pic(X ).
We can define catalecticants and antipolars in the toric context,
obtaining the same result as above.

This leads to:

Theorem
Let B ∈ Pic(X ) be a very ample line bundle. Let f ∈ S2B be a general
form such that its X -rank coincides with the size of the catalecticant
S∗B → SB . The Ranestad-Schreyer locus RS(f ) = {Ω(f )(`) = 0} is
contained in the forbidden locus F(f ).



P1 × P1 and its embeddings

Let X = P1 × P1, S = C[x , y , z ,w ] bigraded (by Z2) with
deg(x) = deg(y) = (1, 0) and deg(z) = deg(w) = (0, 1).

For A = (u, v) ∈ Z2, SA denotes the vector space of forms of bidegree A.

The Segre-Veronese embedding of degree A:

ν(u,v) : P1 × P1 → Puv+u+v = P(SA),

(`1, `2) 7→ `u1`
v
2 .

Example
For A = (1, 1), we have the usual Segre embedding:

P1 × P1 → P3,

so that P1 × P1 is a smooth quadric surface in P3.



Real varieties of minimal degree

Varieties of minimal degree are projective varieties X such that their
degree satisfies deg(X ) = codim(X ) + 1. They were classified by Bertini
and Del Pezzo.

The following characterization is the key to (partially) describe the real
rank boundary of a family of embeddings of P1 × P1.

Theorem (Blekherman-Smith-Velasco)
Let X ⊂ PN

R be a real irreducible non-degenerate projective variety such
that the set of real points is Zariski dense. Every non-negative real
quadratic form on X (R) is a sum of squares of linear forms if and only if
X is a variety of minimal degree.



Real rank boundaries for embeddings of P1 × P1

The Segre-Veronese embeddings of P1 × P1 of degrees A = (2, 2d) are
varieties (surfaces) of minimal degree, examples of rational normal
scrolls.

Theorem
For every d ≥ 1, the real rank boundary of the real variety P1 × P1

embedded with A = (2, 2d) is non-empty. One of its components is the
discriminant of the antipolar Ω(f ), where f ∈ SA.

This generalizes to Pn × P1 and A = (2, 2d).



Thank you


